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Preface

This study is the latest step in a continuing a line of

research begun more than ten years ago. This work has

continued the development of an algorithm for tracking

airborne targets using measurements from an array of

infrared detector elements. Until now, the research has

only been concerned with passively acquired measurements.

This thesis effort expands this by considering the addition

of actively acquired measurements, i.e, measurements of

laser light reflected from the target. -- 2 I z

In any Masters degree program, the shape of the thesis

work bears the imprint of the thesis advisor as heavily as

the imprint of the student. This is especially true in this

thesis. Any success associated with this work is due in

large part to Dr. Peter Maybeck. His guidance and

partnership in this research effort was instrumental in my

completion of this work. Additionally, I would like to

thank Lt Col Zdzislaw Lewantowicz and Capt Randall Paschall

for their review and comments on this research. Thanks also

go to Kristen Larsen and Richard Norris for their .stance

in dealing with software problems. Accession For
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Abstract

This thesis is the latest extension of a line of re-

search begun over ten years ago. The purpose of this re-

search has been to develop an algorithm to track airborne

targets (aircraft and/or ballistic missiles) using forward

looking infrared (FLIR) measurements, as a means of aiming a

high energy laser.

This research deviates from past research in considering

the use of actively acquired measurements. Past research

has concentrated on the use of passively acquired measure-

ments, i.e. measurements of the target's thermal intensity

functions (hotspots) from an array of infrared detector

elements. This research considered illumination of the

target by a low power laser. The measurement of the re-

flected laser light would then give information about the

hardbody location, and presumably an aiming point for the

high power laser.

Specifically, this thesis investigated a ballistic

missile in boost phase of flight. Measurements of the

missile exhaust plume thermal intensity from an array of

infrared detector elements were used by an enhanced cor-

relator/linear Kalman filter to produce estimates of the

FLIR image centroid location and velocity. These estimates

were then used to simulate the aiming of a low power laser

at the missile hardbody. The "pseudo-measurement" output of

xiv



an optical sensor receiving the reflections from the missile

hardbody was then used by a second Kalman filter to estimate

the location of the missile mass center.

This thesis effort involved sensitivity and robustness

studies of the measurement noise variance in the filter

which estimates the missile mass center. These studies

indicated the filter's relative insensitivity to changes in

the measurement noise variance; this parameter only affected

the transient time for the filter to reach the steady state

value of the mass center location. Other parameter studies

were conducted involving the dista.ice between the missile

mass center and the exhaust plume intensity center, and the

infrared sensor element resolution size. The first study

indicated decreased filter performance in locating the mass

center with increased distance. The results from the second

study were inconclusive and require further work.
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ENHANCED TRACKING OF BALLISTIC TARGETS USING

FORWARD LOOKING INFRARED MEASUREMENTS

WITH ACTIVE TARGET ILLUMINATION

I. Introduction

With the advent of the Strategic Defense Initiative

(SDI), research into the use of the high energy laser as a

weapon has intensified. The laser's ability to concentrate

energy in a small area makes it especially attractive for

use against airborne targets (aircraft and/or ballistic mis-

siles). Any system using a hioh energy laser must have the

capabilities of autonomously tracking targets and accurately

pointing the laser at those targets. It is the requirement

for autonomous tracking that motivates this line of

research.

1.i Background

The Air Force Weapons Laboratory (AFWL) at Kirtland Air

Force Base, New Mexico, is presently engaged in research

involving the use of high energy lasers against airborne

targets. In the system now under development, targets are

passively detected using a forward looking infrared (FLIR)

sensor, consisting of a 300 x 500 pixel array of detectors.
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Each pixel, or picture element, detects infrared energy over

an area 15 microradians (azimuth) by 15 microradians

(elevation) square [14]. For this and previous work

[13,14], a subset of this array consisting of an 8 x 8 array

of pixels is used to process infrared energy for target

tracking. This subarray of pixels is defined as the track-

ing field of view (FOV) (13,14].

In the system under consideration, the laser and FLIR

sensor share a common optical aperture. The tracking

algorithm uses the incoming FLIR data to determine a

position offset between the target position and the current

center of the FOV. A controller then zeros these offsets to

keep the center of the sensor FOV on the target. Because of

the shared aperture, centering the sensor FOV on the target

also insures the laser is pointing at the target.

In earlier research, the tracking function was accom-

plished via a standard correlation algorithm. This algo-

rithm compares the current target FLIR image with target

image data from the previous sample period. The correlation

between past and present image data is used to generate the

relative target position offsets, since a translation of the

target image in the FLIR sensor plane is assumed to repre-

sent a spatial translation of the actual target. This

algorithm has the advantages of relative real-time implemen-

tation ease, and of having relatively good tracking perfor-

mance against a wide range of targets, particularly

2



spatially distributed ones. However, the use of a

correlation algorithm does have some associated disad-

vantages.

First, an inherent time lag exists. This lag is due to

the time required for computation of target image correl-

ation as well as the lag associated with physical pointing

of the tracker at the target. Second, the correlation algo-

rithm is unable to distinguish between image spatial trans-

lation due to target dynamics and image translation due Lo

other factors such as atmospheric jitter [10] and platform

bending/vibration [4]. Finally, the correlation algorithm

is unable to take advantage of information on target charac-

teristics, such as size or shape, which may be known a

priori or could be estimated in real time.

To overcome these disadvantages, Kalman filtering

methodology has been incorporated into the tracking algo-

rithm for the purposes of estimation and control [1-5,11-

18]. By modeling the effects of target dynamics, atmo-

spheric jitter, and platform bending/vibration, and includ-

ing them in the filter dynamics model, enhanced estimates of

target position can be produced. These estimates can then

be propagated forward to produce a position estimate at some

future time for use in laser pointing and target tracking,

thereby providing performance potential superior to that

accomplishable by a simple correlation algorithm.
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1.2 Summary of Previous AFIT Research

Since 1978, The Air Force Institute Of Technology

(AFIT) has had a continuing line of research investigating

the use of Kalman filtering techniques in the AFWL high

energy laser pointing and tracking system. This research

has produced numerous theses and papers. Previous theses

[4,13,14] have summarized that body of work. That summary

is included here with modifications.

The first study, begun in 1978 by Mercier [10], com-

pared an extended Kalman filter (EKF) with a standard cor-

relator tracker. The targets were represented as point

sources of infrared energy, and the FLIR sensor image was

modeled as a Gaussian bivariate distribution with circular

equal-intensity contours. The four-state filter maintained

estimates of target position and atmospheric jitter states

in each of two FLIR plane coordinate directions. Both

position and jitter states were modeled as first order,

zero-mean, Gauss-Markov processes. For that effort, FLIR

measurement noise was modeled as consisting of background

clutter and internal sensor noise (thermal noise and dark

current). The measurement noise was also considered to be

temporally and spatially uncorrelated. The results showed

the EKF's ability to outperform the standard correlator in

tracking long-range benign trajectory targets by about an

order of magnitude in rms tracking error.
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Harnly and Jensen [21 expanded Mercier's work by ex-

amininq target scenarios under less restrictive assumptions.

Target velocity and acceleration states were added to the

filter in order to handle less benign target trajectories,

and the FLIR plane target image was modeled with elliptical

rather than circular equal-intensity contours. Adaptive

estimation of parameters associated with the target shape

function was utilized to provide desired performance. The

measurement noise model was also modified to allow for

spatially correlated background noise. Adaptive estimation

of filter dynamics driving noise was also incorporated into

the tracking algorithm. The results indicated the filter's

increased ability to track targets over a wider range of

maneuver scenarios.

The research conducted by Mercier, and Harnly and

Jensen had been based on the assumption that the target

image intensity function was known a priori to be composed

of a single hot spot and well modeled as a bivariate Gaus-

sian function. Singletery [16] and Rogers [15] pursued a

line of research which made no such assumption. The algo-

rithms developed used exponential smoothing of centered

target images, as an approximation to finite memory averag-

ing, to produce an estimate of the target image intensity

shape function, or template. This shape function was then

used directly in the measurement model of an Kalman filter.

These algorithms were then tested using target scenarios in

5



which targets were represented as multiple hot spots, and

the results indicated performance comparable to that of

filters used previously on single hot-spot targets, in which

only parameters in an assumed bivariate Gaussian intensity

had to be identified rather than an entire intensity func-

tion.

Rogers also investigated an enhanced correlation tracker

which had "pseudo-measurements" as an output. The enhance-

ment was due to the current target FLIR image being corre-

lated with the intensity template described in the previous

paragraph, rather than with the previous image data. The

"pseudo-measurements" produced were position offsets between

the target FLIR image and the center of the FLIR FOV in each

of the two FLIR plane coordinate directions. These offsets

were then used as measurements provided to a Kalman filter.

The preprocessing of the FLIR data by the enhanced corre-

lator algorithm allowed the use of a linear Kalman filter

instead of the previously used EKF. This reduced the com-

putational loading when compared to the previously used EKE.

Performance was generally comparable in terms of rms track-

ing errors, with the correlator-linear Kalman filter having

lower mean tracking errors but higher standard deviations

than the EKF.

Kozemchak [3] and Millner [Ii] continued the algorithm

development with investigations of both the EKF and Roger's

enhanced correlator/linear Kalman filter, using more

6



realistic target trajectories. Both Gauss-Markov and

constant turn-rate models were considered for acceleration

representation within the filter. Because of the goal of

attempting to maintain tracking lock on harshly maneuvering

targets, the scheme used by Harnly and Jensen [2] for

adaptively estimating filter driving noise was also imple-

mented. Both filtering schemes exhibited good tracking

performance for target maneuvers up to five g's. However,

the abrupt onset of harsh maneuvers led to serious perfor-

mance degradation.

In attempting to solve the problem of tracking harshly

maneuvering targets, Flynn [1] proposed the use of a multi-

ple model adaptive filter (MMAF). Suizu [17], following up

on Flynn's research, implemented a bank of two elemental

Kalman filters. One filter was tuned for benign target

maneuvers and accepted measurements from a narrow (8 x 8

pixel) FLIR FOV. The second filter was tuned for dynamic

target maneuvers and used measurements from a wide (24 x 24

pixel) FLIR FOV. Using a Bayesian probabilistic weighted

average of the elemental filter outputs [7:129-136], the

MMAF tracker was able to maintain lock on targets whose

dynamics ranged from benign to 20-g pull-up maneuvers at 20

kilometers. The elemental filters were implemented using

both the EKF and the enhanced correlator/linear Kalman

filter. Performance results were comparable, with the

correlator/linear Kalman filter having smaller mean errors

7



and larger standard deviations than the EKF, as seen in

earlier work of Rogers.

Loving [5] expanded Suizu's MMAF implementation by

adding a third elemental filter to the MMAF structure. This

filter was tuned for intermediate target dynamics and used

measurements from a narrow (F x 8 pixel) FLIR FOV. Loving

also compared a Maximum A Posteriori (MAP) MMAF scheme to

the Bayesian MMAF structure previously used. The MAP struc-

ture differs from the Bayesian structure in using only the

estimates from the elemental filter with the highest proba-

bilistic weight, rather than a weighted sum of elemental

filter outputs as in the Bayesian MMAF. The addition of the

third filter enhanced the MMAF tracking performance. No

significant difference in performance was found between the

Bayesian and MAP MMAF algorithms.

Netzer [12] continued further research into the three-

filter Bayesian MMAF algorithm. After examining the steady

state bias errors produced in the more benign of the two

FLIR plane directions when the target made a 20-g turn, he

determined the need to investigate an MMAF structure with

elemental filters tuned for target maneuvers predominantly

in either azimuth or elevation. This segregation of maneu-

ver direction into diff..,rent elemental filters allows the

MMAF algorithm to distinguish maneuvers in these two direc-

tions. Fhis enables the tracker to expand the FOV in the

critical direction on a harshly maneuvering target. Fhe

8



tracker can then maintain lock on a maneuvering target in

the critical direction while still producing accurate esti-

mates in the direction of benign maneuvers. Netzer also

recommended the use of a constant turn rate process for

modeling acceleration at close ranges.

Tobin [18] further expanded the research into MMAFs

using Netzer's recommendations. He added two elemental

filters, tuned for maneuvers in azimuth and elevation, to

the three-filter bank. A comparison between constant turn

rate and Gauss-Markov processes as acceleration models in

the elemental filters was also made. Although the results

indicated smaller steady state errors for the constant turn-

rate model, the Gauss-Markov model filters had consistently

better transient error performance. The performance analy-

sis of the five-filter-bank MMAF indicated the tracker's

ability to maintain target lock during a jink in elevation

while still producing superior tracking performance in the

azimuth direction over an MMAF without any directionally

tuned elemental filters. This was a preliminary feasibility

study, with an eventual goal of using an arbitrary direction

for maneuver acceleration, as opposed to strictly azimuth or

elevation.

Leeney [41 continued the MMAF investigaticn by adding

states to the truth model to account for bending/vibration

effects in a large space structure. Although bending/vibra--

tion states were not added to the tilter model, the

9



elemental filters were retuned using the updated truth

model. The retuned MMAF tracker exhibited satisfactory

tracking performance against targets undergoing dynamic (lo-

g) maneuvers, provided that the values given to the para-

meters associated with the bending/vibration effects are on

the order to be expected. Leeney also examined the use of a

higher sampling rate (50 Hertz versus 30 Hertz), but found

the additional computational burden outweighed the

performance increase. A preliminary investigation into the

use of a rotating rectangular (24 x 8 pixels) field of view

(RRFOV), in which the elongated side of the FOV would be

aligned with the estimated acceleration direction, was done.

The rationale was to replace the two rectangular FOV

elemental filters of Tobin's research with a single filter.

The initial investigation revealed that acceleration state

estimates were too noisy for accurately estimating the

maneuver direction; tne more precise velocity estimates were

used instead, with the long side of the rectangular FOV

being aligned perpendicular to the velocity vector.

Leeney's preliminary work did indicate enough promise with

this idea for further exploration

Norton [13] implemented the RRFOV in his research. In

addition, he also considered the effect of filter dynamics

driving noise strength versus FOV size on :ilter perfor-

mance. His results showed that choice of a larger dynamics

driving noise strength in the direction or maneuver was more

10



important than increased FOV size in improving filter per-

formance. By using an 8 x 8 pixel rotating FOV (instead of

an 8 x 24 pixel rectangular FOV) in combination with larger

values of dynamics driving noise in the direction of maneu-

ver, an improvement in performance was achieved. Norton

also investigated a means to rotate the dynamics driving

noise strength "Q" matrix mathematically so that the larger

"Q" values stayed aligned with the acceleration direction.

A scheme for simulating the physical rotation of the FLIR

sensor plane to keep one axis aligned with the acceleration

vector was also investigated. Preliminary results from

implementation of these various schemes into an MMAF algo-

rithm were encouraging.

Most recently, Rizzo [14] used Norton's results to

investigate a ballistic missile tracking scenario. Inter-

ested in "pogo" phenomenon, where the missile exhaust plume

oscillates along the missile hardbody longitudinal axis, he

modeled this as a second order process. Two parameters,

natural frequency and oscillation amplitude, were studied,

and elemental filters from a four-filter bank were tuned for

different combinations of these two parameters. A compari-

son between a rotating FOV and a diagonal rotating FOV, in

which the maneuver direction was aligned with the FOV diaco-

nal rather than one of the FLIR plane axes, was also made.

The results indicated superior tracking performance using

the diagonal rotating FOV.
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For his research, Rizzo used Norton's eight-state ele-

mental filters as benchmarks for comparison. These filters

were then augmented to ten states by the addition of two

states associated with "pogo" effects. Both the eight and

ten-state filters were then tuned against Norton's 12-state

truth model, which was increased to 14 states by the addi-

tion of the same 2 "pogo" states. After tuning both sets of

filters, Rizzo observed the performance of the eight-state

filters to be superior to that of the ten-state filters.

Since the ten-state filters had knowledge of the "pogo"

effects which were also included in the truth model, and

should have outperformed the eight-state filters which had

no knowledge of the "pogo" effects, a preliminary stochastic

observability analysis [6:243] was conducted to determine

possible causes for this anomaly. The analysis revealed

that target velocity and acceleration states were almost

unobservable for the specific class of missile targets he

was considering. Recommendations for future work included

reducing the order of the filter models, and remodeling the

velocity states as first order Gauss-Markov processe3.

Because of the performance anomalies discovered, Rizzo did

not implement an MMAF structure.

1.3 Objectives

Previous research at AFIT has been directed toward the

goal of producing an autonomous tracker. The progression of

12



past research shows a clear trend toward development of an

algorithm that tracks aircraft and ballistic missiles under

increasingly realistic conditions. These efforts have

concentrated on tracking targets using only passively ac-

quired infrared measurements. Unfortunately, by doing so,

the filter has no information with which to estimate the

missile hardbody location, as separated from the exhaust

plume high intensity peak. This thesis effort will consider

using actively acquired measurements as well, in order to

help resolve the hardbody itself.

Specifically, the scenario investigated will consist of

tracking a ballistic missile in boost phase through the

atmosphere. The ground sensors will consist of a FLIR

sensor detecting exhaust heat and an additional optical

sensor that detects the returns from a low power laser

illuminating the missile hardbody. By observing the laser

returns, some additional information to help discern the

missile hardbody from the exhaust plume is provided to the

filter. The specific objectives of this thesis effort are

outlined below.

1.3.1 ObservabilitV Atialysis. Based on Rizzo's recom-

mendations [14], a stochastic observability analysis [6:243]

will be conducted. Because of the observability-like prob-

lem encountered by Rizzo, Norton's eight-state filter [13)

will be used for this study. The analysis will indicate

13



which states are least observable, and thus the candidates

for elimination in an order reduction effort to address this

issue. Rizzo [14:7-4] indicated target acceleration and

perhaps velocity as the two most likely candidates. Once

the appropriate reduced order filter has been determined, it

will be used as the benchmark filter for this investigation.

1.3.2 Active Illumination Modelling. In the scenario

considered for this thesis effort, illumination of the

missile hardbody is accomplished by sweeping a low power

laser up and down the estimated missile velocity vector,

starting from the estimated centroid of intensity. The

dithering of the laser would illuminate all or some part of

the missile hardbody. By viewing the speckle or other

properties of the return signal, there should be some indi-

cation of the line defining the boundary between the

hardbody and the spatial region outside the hardbody. For

this preliminary work, a modelling of the physical process

of target illumination by a laser will not be attempted.

This effort will instead concentrate on specifying the form

of the measurement data presented to the filter from this

process.

The rationale for using laser illumination is to provide

information to the filter about the location of the missile

center of mass (CM) relative to the FLIR plane intensity

image centroid. The measurement torm used in this thesis
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would present this as a measurement of the CM offset from

the image centroid along the estimated velocity vector. A

separate single state filter will be used to estimate the

offset distance, based on this measurement.

1.3.3 FLIR Filter. The reduced order filter from

Section 1.3.1 will be established as the basic filter used

for all investigations in this research. Before beginning

any of the parameter studies involving the single-state

filter, the reduced order filter will be tuned using Nor-

ton's twelve-state truth model. The truth model will be

changed to reflect a ballistic missile target, rather than

the highly dynamic aircraft target used by Norton.

1.3.4 Single-State Filter Performance. Once the

filter from Section 1.3.3 has been tuned for best tracking

performance, a series of parametric studies involving the

single-state filter will be performed. A sensitivity study

will be conducted first to determine the effect of changing

the laser reflection measurement noise level on the single-

state filter's performance. For this sensitivity study, the

filter will be correctly informed of the changes made in the

"real world" tracking scenario. Once the sensitivity study

has been completed, a robustness study involving reflection

measurement noise level will be performed, in which the

filter will not be informed of changes in the "real world".

A series of parameter studies, involving variation of FLlR
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sensor sensitivity, and separation distance of image cen-

troid from missile CM, will complete the analysis.

1.4 Thesis Overview

This chapter has reviewed past research and enumerated

the objectives for this thesis effort. Chapter 2 considers

the truth model and develops the simulation model used in

this and past investigations. Chapter 3 presents the de-

tailed filter development. Chapter 4 develops the complete

algorithm used in this research and discusses the manner in

which the results of the analyses will be presented. The

results of the performance analyses follow in Chapter 5.

The final chapter summarizes the conclusions and makes

recommendations for future study.
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2. Truth Model

2.1 Introduction

A truth model is the result of an attempt to describe

the behavior of real world phenomena of interest in an

accurate mathematical form. In many cases, the complete

description of true system behavior may require an infinite

dimensional state space model. The number of truth model

states must, of necessity, be finite dimensional, capturing

enough of the dominant characteristics of system behavior

for an accurate representation, while at the same time not

becoming too large to be computationally unmanageable. In a

simulation, such as the one used in this thesis effort, the

truth model provides the basis for depicting the true "real

world" dynamic behavior of a system. The truth model

becomes the standard against which the performance of the

Kalman filter is evaluated.

For this thesis, the true dynamics of the apparent

target image in the FLIR plane are due to the summed effects

of true target motion, atmospheric jitter, and hardware

vibration/bending. The dynamics are represented as changes

in the FLIR plane x and y coordinates (i.e., azimuth and

elevation) of the target intensity image. The position of

the target image at any one time is given by:

x= +Xa + X (2-1)

Y(c= Y V + Y7 2-2)
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where

x1c' YC = image centroid coordinates

xt, Yt = component of xC F Y due to actual target dynamics

Xa, y = component of x., y C due to atmospheric jitter

xb, Yb = component of xC, YC due to mechanical bending/

vibration of hardware

This chapter will describe the state space structure of

this truth model. The twelve-state dynamics model necessary

to account for the terms in Equations (2-1) and (2-2) will

be developed first, followed by the appropriate measurement

model. The chapter will then discuss the simulation space

used in this thesis effort. This discussion will include

descriptions of the coordinate frames, target models, and

derivations of all the measurement simulations.

2.2 Dynamics Model

The twelve-state dynamics model used for the truth model

consists of a two-state target dynamics model, a six-state

atmospheric jitter model, and a four-state mechanical vibra-

tion/bending model. This model is represented by the fol-

lowing first order linear, stochastic differential equation:

ic(t) = FTXT(t) + BTuT(t) + wT(t) (2-3)

where:

F = 12 x 12 time-invariant truth model system

plant matrix

B = 12 x 2 time invariant truth model
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input distribution matrix

xT(t) = 12-dimensional truth model state vector

uT(t) = 2-dimensional truth model input state vector

WT(t) = 12-dimensional zero mean, white, Gaussian

noise vector witn autocorrelation function:

ETWT(t)wT(t+r) I=QT6 (7) (2-4)

The equivalent discrete-time model [6] corresponding to

Equation (2-3) is of the form:

x-(ti-) = $T(tiI,tz)xG(tz) + BTduTd(td + WTd(ti .  (2-5)

where the state transition matrix tT(tj.I,t) is determined

by solving the differential equation [6:40-41]:

d$T(t ,t j)
-dt - FTT(t,tI) (2-6)

using the initial condition: $T(ti,t) = I

The discrete-time input distribution matrix in Equation

(2-5) is:

aTd = JtI $T(th,,T)rdr (2-7)

Finally, the vector quantities in Equation (2-5) are:

xT(t,) = 12-dimensional discrete-time truth model

state vector

UT(t)= 2-dimensional discrete-time input vector

wTd(t
,) = 12-dimensional discrete time, zero mean

white Gaussian noise vector with covariance:
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QTd = Jthi 1 (t_ 1 , )QT47T (t , T)dr (2-8)

where QT is defined in Equation (2-4).

As previously mentioned, the truth model consists of a

target dynamics position state, three atmospheric jitter

shaping filter [iO] states, and two mechanical bending

states, in both x and y FLIR plane directions. In augmented

form, the truth model state vector becomes:

X = Xa (2-9)

The discrete time truth model state transition matrix is:

F d d 2Y2  X6( 02x.

0 ,6X2, Pa, - 0 , .. (2- 10)

0 0. , - t × 6 ]

and the discrete-time truth model distribution matrix is:

FBdt
BT d (y 0 .5  ( 2-11 )

and the discrete-time truth model white Gaussian noise

process is given by:

rTd - a : (2-12
W db -
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where:

= 2-dimensional target dynamics state vector

xa = 6-dimensional atmospheric jitter state vector

= 4-dimensional bending/vibration state vector

Wda(Yi) = 6-dimensional discrete time, white Gaussian

noise related to atmospheric states

wd(t,) = 4-dimensional discrete-time, white Gaussian

noise related to bending states

After examining Equations (2-5) and (2-9) to (2-12), the

truth model state dynamics representation is observed to be

composed of three totally independent partitions. This

allows the dynamics, jitter, and bending models to be devel-

oped separately. The next subsections details the develop-

ment of these three models.

2.2.1 Target Dynamic States. For this and previous

thesis efforts [1-5,10-181, target dynamics are modelled as

they occur in the FLIR plane. The FLIR image plane is

modelled as being coincident with the array of FLIR sensor

elements, and perpendicular to the sensor-target line-of-

sight (LOS) vector. Since the sensor-to-target range is

large, the azimuth and elevation displacements from the FLIR

image plane origin are directly proportional to "pseudo"

azimuth and elevation angles. These "pseudo" angles, alpha'

and beta', as well as the FLIR plane, are developed in

Section 2.3.4.
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To convert the "pseudo" angle measurement units of

microradians to the displacement distances in pixels, a

pixel proportionality constant is used. This constant

represents the angular FOV of a single picture element, or

pixel. Continuing with Rizzo's work [14], a value on the

order of 15 microradians/pixel was initially used in this

thesis work.

Using the assumptions that the azimuth and elevation

rates remain essentially constant over any sample period,

the discrete target dynamics model is:

xt(ti+) = xt(t() + (2-13)
p

yt(t - __ (2-14)

where:

dci'

'( = , measured in micro-radians/second and

constant over the time interval [L,ti]

i'( I) =3r-, measured in micro-radians/second and

constant over the time interval

At = sample time interval t-,- t

= pixel proportionality constant,

15 micro-radians,/pixel

Note the minus siqn in Equation (2-14). 'his is due to the

difference in the y axis orientations between the FLIR plane

coordinate frame and the inertial coordinate frame. Phese
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coordinate frames are shown in Figure 2.1 and developed in

Section 2.3.1.

Arranging these equations in state space form yields:

Y/ttw 0 i vt(t ) 0 -t j'(t 2-15

Using the matrices of Equation (2-15) and the block form

of the overall truth model, the upper left hand block of

Equation (2-10) is:

(DY = ( 2-16)fl10 1

and the upper block of Equation (2-Il) is:

B7-d P t(2-17)k I

and the deterministic input vector in Equation (2-5) is:

L&'(tz) I

The truth model missile trajectory simulation is a

continuation of that used by Rizzo [141. The underlying

dynamics model [14:3-101 is that of a point mass influenced

by a thrust force and a gravitational torce, with all other

external rorces assumed negliqible.
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The formulation of the truth model target dynamics

states in deterministic state space form such as Equation

(2-15) has some advantages. First, although the truth model

trajectory could have been stored as FLIR plane position

coordinates for each sample time in the simulation, rather

than inputting the angular rate inputs to produce such a

position time history, the present form is more flexible in

supporting a wide variety of missile trajectories. For

instance, if a stochastic, rather than deterministic, dynam-

ics model is desired, this can be implemented easily by the

addition of a noise term to Equation (2-15).

2.2.2 The Atmospheric States. Using power spectral

density characteristics, it can be shown that the atmos-

pheric jitter phenomena can be approximated by the output of

E third-order shaping filter driven by white Gaussian noise

L10]. The Laplace domain representation of the shaping

filter transfer function is given by [10:12]:

xa(s) KaAB2
= (2-19)

Wa(s) (s+A)(s+B)-

where:

xa = atmospheric jitter position in one direction of the

FLIR image plane, the output of the shaping filter

defined in Equation (2-19)

W- = zero mean, unit strength, white Gaussian noise

K7 = gain, adjusted for desired jitter RMS value

A break frequency, 14.14 rad/sec 'i0

B = break trequency, 659.5 rad/sec 10
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The inverse Laplace transform of Equation (2-19) is a

third-order, linear differential equation. This can be

expressed as three coupled, first order, linear differential

equations in state space form. The atmospheric jitter ef-

fects can be modeled identically in both the x did y direc-

tions. The augmented six-state truth model for atmospheric

jitter expressed in Jordan canonical form is [10]:

Xa(t) = Fa2a(t) + G(,w (t) (2-20)

where:

xa(l) =6-dimensional state vector

Fa 6 x 6 time-invariant plant matrix

Wa(t) = 2-dimensional, zero mean, white Gaussian

noise process with unit strength and inde-

pendent components, described as:

F[Wa(t)I= 0

E[Wa(t)WT(t+T)]= Q 6(r)= [ 16(r)a( a a 10 1

The six atmospheric states in the state vector correspond to

the low frequency pole and the higher frequency double pole

in the x and y FLIR plane directions. The atmospheric plant

matrix is defined in Jordan Canonical form as [10:131:

-A 0 0 0 0 0
0 -B 1 0 0 0
0 0 -B 0 0 0

F: 0 0 0 -A U 0 (2-21)

0 0 0 0 -R i
L o u o u o - B
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and the noise distribution matrix is [0:13-i4]:

61 0

62 0

63 0
Ga = (2-22)

0 (7-

L 0 C,3_

where:

KaAB
C=(A-B)2

6 2 =- 1

KaAB a

U3 - (A-B)

The equivalent discrete-time model associated with

Equation (2-20) is the atmospheric jitter partition of

Equation (2-5) and is given by:

xa(t,,) = 4 a(ti.;,tt)xa(ti) + Wda(ti) (2-23)

Mercier [i0] showed that the state transition matrix derived

from the time-invariant plant matrix of Equation (2-20) is:

0a1 0 0 0 0 0

O a2Z (2a23 0 0 0

0 0 OaJ3 0 0 0
4a(t) 0 0 0 0a 0 0 (2-24)

0 0 0 0 0 75 5

0 0 0 0 0 't
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where:

Oall = a44 = exp(-At)

Oa22 Oa55 exp(-B~t)

0-= Oa56 texp(-BAt)

Oa33 = 'a66 = exp(-BAt)

The six-dimensional, zero mean, discrete-time, white,

Gaussian noise Wda(tA) has statistics defined as:

F[Wda(t) 3 = 0 (2-25a)

E{WdatiW3(ti) =i~ (Pa = J) atij)G2QaGT T( tiT)d-T (2-25b)
tL

2.2.3 Bending/Vibration States. Leeney [41 recently

added mechanical bending states to the truth model. These

states were added to account for vibrational effects in the

FLIR data that occur when the sensor is mounted on a moving

non-rigid platform. Based on AFWL-conducted tests, Leeney

concluded that bending effects in both the x and y FLIR

directions could be represented by a second order shaping

filter, driven by white Gaussian noise. The Laplace domain

transfer function of this shaping filter is represented by

[5:33]:

... . . (2-26)

u%(S) ,-+2+2bW w

where:

x6 = shaping tilter output, the FLIR plane positional

offset due to bending/vibration
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W= zero mean, unit strength, white Gaussian noise

with an autocorrelation of:

E[w6(t)w,(t+r) ] = Q66(t-r) ; Qb = 1

Kb = gain adjustment to achieve desired root mean

square (RMS) bending output; K4 = 5x10"

(Note: K2 is given here because the strength of the

bending white noise is expressed in terms of this

parameter, rather than K5)

b = damping coefficient, = 0.15

Wnb = undamped natural bending frequency, v rad/sec

Leeney [4:35] determined that the x and y directions could

be treated independently and augmented them together to form

a four-state model. The linear stochastic differential

equation describing the bending/vibration effects is:

k6(1) F b(t) + GbWb(t) (2-27)

where:

b(t) = 4-dimensional state vector

Fb = 4 x 4 time-invariant plant matrix

W6 (t) = 2-dimensional, zero mean, white Gaussian

noise process with independent components of

unit strength, Qb = [ 1 0]

= 4 x 2 noise distribution matrix

The bending plant matrix is defined as [4:142]:
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o 1 0 0

-wzb _2( ) 0 0
Fb 0 0( 2-28)

L0 0 -W nb2 _2 6,IWO

and the noise distribution matrix is [4:1421:[0 0]
Wnb2k P 0

= 0 0 j (2-29)

L 0 Wnb~k P

(Note that A is the pixel proportionality constant)

The equivalent discrete-time model for Equation (2-27) is

of the form:

y%( i+) = 'bW i-P 't x( di + W db( z. (2-30 )

where:

-bI (Pb2 0 01
¢3 Ob4 0 0

) 0 0 1 I (2-31)

L 0 0 t$U3 Ob4_

and

= exp(-rbAt) [cOs(wbt) + gbsin(wAt)i

exp(-otA) [-sin(wbAt)]
¢bCb

®b;= exp(-arbt [ -1-(b)' ] sin(wb~t)

b exp(-a -At) (COS ( f ) A! - bsin (wAlt) I

Ul sample time interval [ ! -t]
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-= real part of the root of the characteristic

equation in Equation (2-26)

= imaginary part of the root of the

characteristic equation in Equation (2-26)

The four-dimensional, zero mean, white Gaussian noise pro-

cess of Equation (2-30) has an equivalent, discrete-time

representation with statistics given by:

E[wdb(ti) ] = 0 (2-32)

Tw(t. I  )G6 Q 6G (t _,r)dT (2-33)
E[Wd6(tt}Wd(b )] Qdb f tZ b(ti-.. b

t-

2.3 Simulation Space

In order to simulate the operation of a FLIR sensor

accurately, a "simulation space" has been developed for use

on a digital computer. This simulation space has two

purposes. First, the representation of a realistic target

trajectory through three-dimensional space can be achieved.

Second, the simulation space provides the means of

mathematically translating the target infrared image and

velocity vector in three-dimensional space onto the two-

dimensional FLIR image plane. These translations will be

discussed in this section. However, the coordinate frames

which provide the basis for these transformations will be

presented first.

2.3.1 Coordinate Frames. The following coordinate

frames are used in the simulation of the operation of the

FLIR sensor on a digital computer [14:3:23-24]:
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Inertial Frame:

Origin: location of the FLIR sensor

Axes: e - due north, tangent to the earth's surface,

defines zero azimuth

ey - inertial "up" with respect to flat earth

approximation

e - vector completing right-hand coordinate set,

defines 90 azimuth

Note: The azimuth angle (a) is measured eastward from ex.

The elevation angle (3) is measured "up" from the

horizontal plane defined by e. and ez.

TargetFrame:

Origin: center of mass of the target

Axes: e - along the true velocity vector

epu - out the right side of the target,

perpendicular to eu

e o - vector completing the right-hand

coordinate set

Note: 'u' - along the velocity vector

'Pu' - perpendicular to the velocity vector

'pPu' - perpendicular to both of the above

a - 8 - r Frame:

origin: center of mass ot the target

Axes: e-r - coincident with the true sensor-to-target

LOS vector.
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e., eB - define a plane perpendicular to e,

rotated from inertial e. and e,, by the

azimuth angle (a) and elevation angle (B).

FLIR Image Plane:

This is the FLIR image plane defined by the e. and

e3 unit vectors. Because of small angle approximations,

the "pseudo" azimuth and elevation angles, a'and B' as

shown in Figure 2.1, measured with respect to the FLIR LOS

vector, are linearly proportional to the x and y cartesian

coordinates on the FLIR plane. The x and y coordinates are

distances, in pixels, from the center of the FLIR FOV.

Observing the FLIR plane from the inertial origin, x is

positive to the right and y is positive down. This conven-

tion is used to maintain a right-handed coordinate system.

The inertial and target frames, as well as the FLIR image

plane, are illustrated in Figures 2.1. and 2.2. Note that,

for interpreting the projections in Figure 2.2, the e,

direction is not necessarily in the FLIR image plane; this

will be developed further in Section 2.3.3.

2.3.2 Target Model The basic target model used for

this and previous theses [14] is a planform with two inten-

sity functions. The spatial relationship between the two

intensity functions is shown in Figure 2.3. The displace-

ment ot the two Gaussian intensity function centroids along

32



LFLI

A L

:IL IhaH

Ir&tn FLIP

H ~fl-~ Z( EAST)

Flpure 2 1 The FLIR Plane

33



ep p

34



CL TH, R() 11)
Se

(II~.1n DiFplacecnt DiSp13cemer., L i p -Ac c.
In n i i n~ (Df C7 -n t r- -I d o f C e tr o L dQf ~ t C) 1

me t) et r!-' M( c

ii -' ~t

35



the e. axis was based on the assumption that the dispersion

of the exhaust plume in the e. direction is approximately 20

times the radius of the missile 114j. The centroid of the

first intensity function is located b5 meters behind the

center of mass of the missile. This distance was chosen to

simulate the composite centroid of the exhaust plume being

close to the missile exhaust nozzle, using the assumption

that the distance from the missile center of mass to the end

of the missile is 20 meters. The second intensity function

is located 110 meters from the center of mass. The rela-

tionship between the missile center of mass and the centers

of these intensity functions remain fixed in the target

frame during a simulation, and is indicated in Figure 2.3.

As was previously indicated in Section 2.2.1, any external

forces acting on the missile other than thrust and gravita-

tional forces are assumed negligible. Therefore, sideslip

angle and angle of attack are considered to be zero. These

simplifications allow the semi-major axes of the elliptical

constant-intensity contours of each of the infrared inten-

sity functions to be aligned with the target's velocity

vector, as illustrated in Figure 2.4. As noted in previous

thesis efforts [12], this yields a simplification of the

simulation space geometry while retaining the essential

features of the trajectory simulation necessary for the

performance analysis of the tracker.
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2.3.3. Target Image Projection onto the FLIR Plane.

During the simulation, as the target propagates through

three-dimensional inertial space, the output of the FLIR

detector elements in the array is simulated by projecting

the target's two intensity functions onto the FLIR plane.

In this and previous research [13,14], each of the intensity

functions remains fixed with respect to the target frame,

while the locations of the intensity functions in the FLIR

frame change as the target's orientation relative to the

sensor also changes. For simplicity, the location of each

of the intensity functions (hotspots) is initialized in the

target frame as a displacement from the missile center of

mass (Figure 2.3). To orient the intensity functions in the

FLIR coordinate frame, they are rotated by the target orien-

tation angle Op (Figure 2.4).

Consider the geometry of Figure 2.5. This figure shows

the geometrical relationship between the current target

image and a "reference target" image in the FLIR plane

(Figure 2.3 or 2.4). The reference image is oriented to

correspond to the largest apparent planform at a given

range. Using Figures 2.4 and 2.5, the current single hot-

spot image is defined as [5:371:

= (2-34)

t'u gp -C)+(3UQ C PU os'

oU  [ I
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where:

Guo0 Pu0 = the initial dispersion of the target

intensity function along eu and ePu in the

target frame of the reference image

CU, 0u = the current dispersions of the target image

r= initial sensor-to-target range of the

reference image

r = current sensor-to-target range

v = target inertial velocity vector

u = magnitude of v

VLOS = projection of v onto the FLIR plane;

the component of v perpendicular to the

LOS vector

U LOs = magnitude of v LOS; u LOs=\ & + 3

y = angle between v and the FLIR plane

AR= U-- O- aspect ratio of the reference image

Equations (2-34) and (2-35) define the dispersion along the

principle axes of the intensity function's constant-inten-

sity ellipses as seen by the FLIR sensor (Figure 2.4). Such

a description is accomplished for each of the two intensity

functions of Figure 2.3.

2.3.4. Velocity Projection onto the FLIR Plane.

The deterministic input vector, i-,,(f) : . '(t,) i3 fl  I in

Equation (2-5), is the projection of the target's inertial
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velocity vector onto the FLIR image plane. Harnly and

Jensen [2] demonstrated that this projection is based on the

geometry illustrated in Figure 2.6. From Figure 2.6, it can

be seen that:

a(t) = arctan [ ] (2-36)(t)= artan X(t)

Taking the time derivative of Equation (2-36) and using

the fact that the sensor-to-target range is large so that

a(t) = 4i'(t) yields:

(t)Uz(t)-z(t)ux(t) (-7X'(t) =Z --(t) =A (2-37)

x2 (t)+z 2(t)
where:

UxU z = components of the target's inertial velocity

in the e. and ez directions

In a similar development:

3(t) arctan ( ] (2-38)B~~t)~ = rtn r ( t )

B'(r. = ~ ) (t ) Uy(t)-y(t)} (I
= (t) Bt (2-39)

where:

x(1)ux(t)+z(t)Uz(t)
hot) -rh(t)-

Uv component of the target's inertial velocity in

the e,. direction

Equations (2-37) and (2-39) define the deterministic input

vector u-7 ,(t,) in the truth model dynamics difference

equation, Equation (2-5).
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2.4 Measurement Models

The realistic modelling of measirements of real-world

phenomena is an important feature of any simulation. This

section of the chapter will describe the method for simulat-

ing the measurement output from each infrared detector

element in the FLIR array which has been used in previous

efforts, as well as in this effort. The method for simulat-

ing the output from an optical sensor which receives low

power laser light reflected from the missile, as developed

for this thesis effort, will also be discussed.

2.4.1 Infrared Measurement Model Information on the

target is obtained by measuring the average intensity of the

infrared energy received by each detector element in the

FLIR array. The target's apparent infrared image or "inten-

sity function" on the pixel array of detectors is the col-

lective sum of effects due to target exhaust plume infrared

radiation, background noise, and sensor noise.

Consider the energy radiated from a target with a single

intensity function. The infrared intensity function on the

FLIR image plane can be modelled as a bivariate Gaussian

distribution with elliptical constant intensity contours

[2]. This bivariate Gaussian intensity function is given by

the following equation [13]:

I[x,V,x k(f),Ve -(.) ] = xLO. [ IVP - '1A T  (2-40)
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where:

Ax = (X-Xpeak)cosIET + (y-Ypeak )sinET

Ay = (y-ypeak )cosOT - (x-xpeak)sineT

= target orientation angle between the projection

of the velocity vector onto the FLIR plane

and the FLIR plane x axis; See Figures 2.5 & 2.7

x,y = reference coordinate axes on the FLIR plane

XpeakYpeak = coordinates of the peak intensity of the

single Gaussian intensity function

Imax = maximum intensity of the function

P = 2 x 2 target dispersion matrix whose

eigenvalues (au and a,, ) define the dispersion

of the elliptical constant intensity contours

(along the velocity vector and perpendicular

to the velocity vector) in the FLIR plane

(see Section 2.3.3)

The composite FLIR plane image intensity function,

represented as the difference between two individual inten-

sity functions for a missile exhaust plume, is shown in

Figure 2.7. To form the characteristic crescent shape of a

missile plume, the rear individual intensity function is

subtracted from the forward intensity function. Since the

intensity value from an FLIR sensor element cannot be nega-
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tive, the simulation software sets any calculated negative

intensity values to zero.

The intensity measurement produced by each sensor pixel

is the average infrared energy intensity on that pixel.

This intensity is the sum of the target's intensity func-

tion, spatially correlated background noise, and FLIR sensor

noise. The output of the sensor pixel in the /th row

and kth column of the array at time t, is [141:

zjk(t1 ) =.f IIIxYXpeak (tY ) , v (t.) ]
Ap pjxe1jk peak

-12[x1Yfxpeak (ti) fYpeakj t i) j Idx dy

+ fjk(ti) + bjk(ti) (2-41)

where:

Zik(ti) = output of pixel jk, average intensity

on that pixel

A = area of one pixel

11,2 = intensity function of the first and second

Gaussian intensity function (see Figures 2.3

and 2.7)

x,y = coordinates of any point within pixel j

X eak ,PPk = coordinates of maximum intensity of the tirst

Gaussian intensity point

XPk ,vek = coordinates of maximum intensity of the second

Gaussian intensity point

[I'k(l?= effect of internal FLIR sensor noise on pixel YA
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jk(tt) = effect of spatially correlated background noise

on pixel jk

The sensor error njk(td is the result of thermal noise

and dark current in the infrared detectors. This error is

assumed to be both temporally and spatially uncorrelated

[14].

The background noise bjk(t) is represented as a

spatially correlated noise with radial symmetry, whose

correlation decays exponentially. Harnly and Jensen [2]

used a correlation distance of approximately two pixels in

the FLIR plane, and simulated this by maintaining non-zero

correlation coefficients between each pixel and its nearest

two neighbors in all directions.

By concatenating all 64 values of bjk (corresponding to

an 8 x 8 pixel field of view) into a 64-dimensional vector

b(tz), the spatially correlated background noise is

modelled as [14]:

b(tj) NR b'(tI) (2-42)

where:

R 64 x 64 correlation matrix of the discrete,

zero mean, white Gaussian vector noise process b(lt)

b'(11) = 64-dimensional, discrete, zero-mean, white

Gaussian vector noise process with the

correlation matrix I

Cholesky square root
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A detailed development of this spatially correlated

noise process as well as the FLIR sensor noise process can

be found in the work of Harnly and Jensen [2]. It is

mentioned here only for completeness in describing the truth

model. The actual parameters used for the sensor error and

the background noise will be detailed in Chapter 4.

2.4.2 Laser Reflection Measurement Model For this

initial effort, no attempt was made to model the physical

phenomena involved with laser light reflected from the

missile hardbody being received by an optical sensor. Since

the purpose of reflected laser light would be to provide

information on the location of the missile center of mass,

an attempt was made to model the information about the

center of mass which would be derived from reflected laser

light.

The scenario for development of the missile center of

mass measurement is a continuation of that used by Rizzo

[14]. A ballistic missile in boost phase is tracked using

measurements from the FLIR sensor. The "pseudo" measure-

ments derived from the FLIR sensor measurements and enhanced

correlator are input to a Kalman filter, which provides

position and velocity estimates of the infrared image cent-

roid of the exhaust plume. The enhanced correlator will be

described in Chapter 4. These estimates are then used to

aim a low power laser along the filter estimated velocity
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vector from the estimated center of intensity. Any reflec-

tions received from the missile provide information about

the missile center of mass. By observing the characteris-

tics of the return signal from the laser being swept along

the velocity vector, one can anticipate getting an indica-

tion of when the laser passes the interface between the

hardbody and just background, at both ends of the missile

hardbody. Since the image intensity centroid position and

velocity estimates are in terms of FLIR plane variables, a

decision was made to simulate the mass center measurement in

the FLIR plane also. With this decision, the problem of

simulation then becomes a problem involving plane geometry.

The first phase of the simulation involves the projec-

tion of the three-dimensional missile hardbody onto the two-

dimensional FLIR plane. For simplification, a rectangle was

chosen to represent the shape of the missile hardbody pro-

jection. With the assumption that the longitudinal axis of

the missile hardbody is aligned with the velocity vector,

the geometry for projection of the missile's three-dimen-

sional length onto the FLIR plane is shown in Figure 2.5.

The geometry is described by:

Lengthf-13R cosy Length,,,,,, (2-43)

where:

Length,,,, = FLIR plane projection of missile length

T angle between v and the FLIR plane (radians)

LengthOuaj],= true missile length in pixels
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since the missile is cylindrical, the projection of the

missile diameter onto the FLIR plane is equal to the missile

diameter. Once the projection of the missile's dimensions

onto the FLIR plane is accomplished, the rectangle repre-

senting the missile is located on the FLIR plane by offset-

ting the rectangle's center from the truth model image

centroid along the FLIR plane truth model velocity vector.

The offset distance was chosen by using the intensity func-

tion displacements in Figure 2.3.

The next step in the simulation involves the determina-

tion of the missile center of mass measurement. This is

accomplished geometrically. The path along which the laser

would be dithered is represented by a rectangle (a rectangle

rather than a line was used to account for the laser beam

width). If the laser hits the missile, some form of reflec-

tion is obtained. This reflection is geometrically simula-

ted by having the two rectangles overlap as shown in Figure

2.8a. The coordinates of this overlap area are determined by

finding the intersections of the line segments representing

the sides of the rectangles. These intersection points, as

shown in Figure 2.8b, (representing the corners of some

enclosed area) are used to determine the centroid of the

area of intersection (and presumably reflection). Once the

center of mass measurements coordinates have been calcu-

lated, the offset distance from the filter estimated image

centroid is determined. In the simulation, if the combina-
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tion of estimated intensity centroid position and estimated

velocity vector orientation is not accurate enough to cause

the two rectangles to overlap, then no "reflection" occurs,

and no measurement update occurs in the filter. In this

case, the filter simply propagates the estimate until a

reflection does occur. A complete development of the geome-

trical simulation of the mass center measurement is detailed

in Appendix A.

The offset measurement which is available for filter use

is modeled by adding measurement noise. The output of the

sensor at time t, is:

Z(11.)  Loffset(,,) + v(t1 ) (2-44)

where:

z(11 ) = sensor output at time (t,)

L)ffset(t) offset of center of mass from filter estimated

FLIR image centroid along the filter-estimated

velocity direction in the FLIR plane

v(t = discrete, zero mean, white Gaussian

measurement noise with statistics J{vU,) :0,

Iv(f~v(t,):~tp, t:/ 0 otherwise

Ehe simulated measurement developed in this section will be

related to the linear filter measurement model in Chapter 3.

Ihe parameters used tor the measurement noise strenqth will

be discussed in -hapter 5.
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2.5 Summary

This chapter has developed the truth model dynamic

system as the augmentation of a deterministic target trajec-

tory component, a stochastic component due to atmospheric

jitter, and a stochastic component due to mechanical bend-

ing/vibration. In order to simulate the operation of a

tracker on a computer, a simulation space with various

coordinate frames and a target model was developed.

Finally, a measurement model for the output of the infrared

detectors in the FLIR array and a model for the output of

the optical sensor receiving returns from the reflected

laser light were developed.
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3. Filter Models

3.1 introduction

This chapter presents the filter models used in this

thesis effort. Section 3.2 develops the six-state filter,

based on FLIR measurements, which consists of target dynamic

states and atmospheric jitter states. Section 3.3 develops

the single state filter, based on the processing of low-

power laser returns, which estimates the offset distance

between the image centroid and the missile center of mass.

The measurement models used in each of the filters are also

developed.

3.2 FLIR Filter

The filter initially used at the beginning of this

thesis was based on the eight-state benchmark filter used by

Rizzo [14]. Based on the results of the observability

analyses (see Chdpter 5), the target acceleration states

were deleted from the filter. For the remainder of this

thesis work, a six-state linear Kalman filter was used to

provide state estimates for the FLIR image position and

velocity, as well as estimates of atmospheric jitter.

3.2.1 Dynamics Model. Previous AFIT research has

considered two different models for representing target

dynamics. The first model represents target acceleration as
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a zero mean, first-order Gauss-Markov process; the second

describes acceleration using a constant turn-rate rTodel.

With the deletion of acceleration states from the previously

used eight-state filter, a new representation for target

velocity was needed. A decision was made [8,14] to repre-

sent target velocity as a zero mean, first-order Gauss-

Markov process. This is because time-correlated physical

states such as position, velocity, and acceleration can

often be well represented by an exponentially time-corre-

lated first-order Gauss-Markov process. The state vector

for the six-state Kalman filter used in this research is

defined as:

Xl Xt

x t
6

X3 IVx

X V(3-1)

x5 Xa

LX6 _J _ YaJ

where the states are:

xt ~ x (i.e., azimuth) component of FLIR image centroid

position due to target dynamics

Yt= y (i.e., elevation) component of FLIR image

centroid position due to target dynamics

x component of FLIR image velocity

v y component of FLIR image velocity

X'7 X component of atmospheric jitter

V= v component of atmospheric jitter

55



Each element in Equation (3-1) is coordinatized in the

FLIR plane. Note that the atmospheric jitter model has been

reduced from the six-state form in the truth model (see

Section 2.2.2) to the two-state model. seen here. The effect

of the higher frequency double pole was negligible 13] and

was disreqarded to reduce the filter order. Also note the

omission of any bending/vibration states. Leeney [4] tested

the omission of bending states from a similar filter, and

found no significant degradation in filter performance. The

filter model is described by the following time-invariant,

linear stochastic differential equation:

cf(t) = Ffxf(t)+Gwfr(t) (3-2)

where:

xf(t) six-state filter state vector of Equation (3-1)

Ff = time-invariant system plant matrix

G= time-invariant noise distribution matrix

wf(t) = zero mean, white Gaussian noise vector of

strength Qf

and

0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0
TV,If0 0 0 0 0 (3-3)

0 0 0 0 -1Ta

0 0 0 0 0 -

56



and

0 0 0 0(-

0 0 0 0

Gf 0 1 0 0 (3-4)

0010
0 0 1 

with

r 2 O 0 0

2 0
0 T 0 0

Qf = (3-5)

00 Ta 0
a

0 0 0 2T

where:

r., T = correlation times for the target x and y

velocities

T7 = correlation time for the atmosoheric jitteral
position process

0>, > = variance and mean-squared value for

the target x and y velocities

- variance and mean-squared value for the

atmospheric jitter position process

The parameters used for the filter correlation times and

variances will be described in Chapter 5.

Phe filter state estimate and error covariance matrix

are propagated forward over a sample period using the

following equations 6:171-172]:
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A A

Xf(t 1.1) = (Pf(At)Xf(t )  (3-6)

Pf(ttl/) = lf(At)P(t)4rf(At) + ~f (3-7)

where:

A
xf(tL) = filter estimate of 6-dimensional state vector

Pf(tj) = filter covariance matrix (6x6)

(ti) = time instant before FLIR measurement is incorporated

into the estimate at time t.

(1) = time instant after FLIR measurement is incorporated

into the estimate at time t.

tf(A) = time invariant state transition matrix for

propagation over the sample period: At=1 1- -ti

and Qdf is defined as:

=[ t i +l  f(tI,,)GfQfGTD(tt 7)d T (3-8)Qdf f f • f -t1,!

with

1 0 ¢13 0 0 0

0 1 0 ¢ 4 0 0

0 0 0 33 0 0 0
5f( At) 0 0 0 0 0 0 (3-9)

o 0 0 0 55 0

0 0 0 0 0 66

where:

7= ( l-exp(-Al))

x
At

A/
exp(-&)
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® = exp( At

Lt

6 exp(-

a

and

qrdffl 0 qdf]3 0 0 0

0 qdf22 0 9df24 0 0

qdf31 0 qdf33 0 0 0

Qdf= 0 qdfq 0 qdf14 0 0 (3-10)

0 0 0 0 qdf55 0

0 0 0 0 0 qYf66 _

where:

q =2orT[t2,,1ep-4 ) At ~x iex 2At

TY 2AW
qdf22  2-7, [At-27 (l-exp(-T )+-(-exp(-4 -))

at 2At
=df 2Gr ( [epr (y -- ) 2 (1 -exp ( - - ) )- I

qat 7 2At9df24 =2o .[2ry(l-exp(--) - 1 -exp( - ) ) I

qdf?? I qrdfj?

2 At
7dfU 3 j,( -exp(- -X

24W
qdf42 q2 ,t

q~i~fqq a(,,(1-exp(- v ))

q'(ii 97 jfoo = <(l-exp(- Ta2

The pointing controller used for this and previous

studies is idealized. Physical implementation considera-

tions, such as servo lag and inertia, are neglected. Netzer

12,' demonstrated that any errors generated by Li,,e use of an
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idealized controller are small and are interpreted by the

Kalman filter as atmospheric jitter. Following the filter
A

propagation cycle, the estimates ( and .- )are

used to generate control signals to point the FLIR sensor

optical centerline at the target.

3.2.2 Measurement Model. As an alternative to the 64-

dimensional, non-linear measurement model of Equation (2-

41), Rogers [15] developed an enhanced correlation algorithm

to provide two "measurements" of centroid offsets in the

FLIR plane to a linear Kalman filter measurement model. The

correlation algorithm enhancement occurs in several ways

[18].

First, the current FLIR data frame is correlated with a

template (an estimate of the target's intensity function),

instead of being corre.ated with the previous FLIR data

frame. This template will be developed in Section 3.2.2.1.

Second, instead of outputting the peak of the correlation

function, the enhanced correlator outputs the center of mass

of that portion of the correlation function that is greater

than some predetermined lower bound, a technique known as

"thresholding". Therefore, the enhanced correlator does not

suffer the problem of distinguishing global peaks from local

peaks, as do many conventional "peak-finding" correlation

algorithms. Third, by using the enhanced correlation al-

gorithm, the FLIR/laser pointing commands are generated via
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the Kalman filter propagation cycle rather than as the "raw

measurement" output of a standard correlation algorithm.

Finally, the Kalman filter state estimate is used to center

the template, so that the offsets seen in the enhanced

correlator algorithm should be smaller than in the conven-

tional correlator. This increases the amount of "overlap"

between the actual FLIR data and the stored template, thus

improving performance.

The outputs of the enhanced correlator are the two FLIR

plane x and y offsets of Equations (2-1) and (2-2). It is

these enhanced or "pseudo-measurements", rather than the raw

FLIR data, which are used in the linear Kalman filter mea-

surement update cycle. An overview of the enhanced corre-

lation process is presented next. For a more detailed

development, see Rogers [15].

3.2.2.1 Template Generation. The template de-

scribed in this section is part of an overall data process-

ing algorithm, shown in Figure 3.1. The following discus-

sion of the template refers to the "Form Smoothed Template"

block in Figure 3.1.

The templte (an estimate of the target's intensity

tunction) is generated by averaging the N most recent cen-

tered intensity functions observed by the FLIR sensor. The

intensity functions are centered on the FLIR plane by use of

the "shifting" property of the Fourier transform, since the

frequency domain is where the correlation is being
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determined. The value of the memory size N is determined by

the dynamics of the target intensity function, with more

dynamically changing functions requiring smaller values of

N.

For online filter applications, the use of true finite

memory filtering techniques causes difficulties with con-

straints on computer memory. To avoid these difficulties,

"exponential smoothing" was used to approximate the averag-

ing. The properties of exponential smoothing are very

similar to finite memory filtering [71, but with the ad-

vantage of only requiring storage for the FLIR data from the

previous sample instead of N previous samples. The exponen-

tial smoothing algorithm maintains the template by the use

of the following equation:

A Al(t 1) YI?(tj) + (l ? I t )(3-11)

where:

A
I(t) "smoothed estimate" (template) of target's

intensity function

I(t) "raw" intensity function from the current FLIR

data frame

smoothing constant; 0 < s I

The smoothing constant's value is comparaole to the value

seiected for N. Larger smoothing constant values emphasize

tie current FLIR data and correspond to small values of N.
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Based on previous studies [3,5,11,13,14,17], a value of 0.1

will be used for the smoothing constant.

Figure 3.1 details the structure of the overall enhanced

correlation/linear measurenient model data processing al-

gorithm. This structure deals with an algorithm which uses

data from a non-rotated FLIR field of view. For this thesis

work, the algorithm was modified to use a diagonally rotated

FLIR field of view. That modification will be presented in

Chapter 4. When the incoming FLIR data is received, a

transformation to the Fourier domain by a fast Fourier

transform is done. The FLIR image data is then centered in

the FLIR plane by use of the shifting property of the Four-

ier transform. The filter computed shift is equal to:

A A

xl.:' (tz. + xtti + (ti.)  (3-12)

.... ( z) = Yt~ + /1 t (3-13)

A A A A
where t,' Xa, vt , and Va are the estimates of the states

defined in Equation (3-i).

There are several reasons for performing a Fourier

transformation on the FLIR uata. First is thac the correla-

tion described in Section 3.2.2.2 is readily done in the

Fourier domain. The second is that this form of the al-

gorithm allows for implementation of optical processing

156.
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The shifts of Equations (3-12) ind (3-13) (the "X-Z

Phase Shift" block of rigure 3.1) are performed using the

shifting property -)f Fourier trans~orms. This property

allows translation shifts in the spatial domain to be accom-

plished by performing a linear phase shift in the Fourier

domain [15]. The phase shift is expressed as:

y-y= G(fx,fy)exp?-12 (f,.x +fvy L) (3-14)

where:

g(x,y) = 2-dimensional spatial data array

F *- = Fourier transform operator

G(fx,fv) =F((xy)

After centering, the data is incorporated into the

template using the exponential smoothi-g technique of Equa-

tion (3-11). It is this template which is now stored and

used for correlation with the next FLIR data frame to pro-

duce the "pseudo-measurement" used by the filter.

3.2.2.2 Enhanced Correlation "Pseudo-Measurements".

The template, as developed in the previous section, serves

as the filter's best estimate of the shape of the target

intensity function prior to receiving .1 new FLIR data frame.

The correlation of the incoming FLIR data with the template

provides the position oftset of the target intensity func-

tion from thp center of the field of view. This cross-cor-

relation, performed in the Fourier domain space, is ccmputed
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by taking the inverse fast Fourier transform of the follow-

ing equation [15]:

tIg(x,v)'l(x,y)} = G(J,y)Lvf(,tfJV  (3-15)

where:
T = Fourier transform operator

q(x,v)l(xy) cross correlation of g(x,v) and l(x,y)

g(x,y) = measured target intensity function

l(x,y) = expected target intensity function (template)

G(iX,fy) = FIg(x,v) (

L'(fx,fv) complex conjugate of J1(x,V

After the inverse fast Fourier transformation has been done,

the values of the correlation function g(x,y)*I(x,V) are

modified so that any value in the correlation function less

than 0.3 [14] of the function's maximum value is set to

zero. This "thresholding" technique is used to eliminate

false peaks in the correlation function that occur due to

noise and other effects. As indicated in Figure 3.1, the

output of the inverse fast Fourier transform is the oflset

of the "thresholded" FLIR intensity function from the center

of the FLIR field of view. This offset is assumed to be the

result of the summed effects of target dynamics, atmospheric

jitter, and measurement noise. Expressed in terms of the

filter states of Equation (3-I), the offset measurement in

pixels is:

:, •* I, 3J-ho6
*,, . - ;, , - U , 5 - '



These two measurements can then be represented in state

space form as:

z(tl.) = Hfxf(t,) * v,(t,) (3-18)

where:

z(tz) = [XoffsetVUfJsetT

x,(t,) state vector of Equation (3-I)

Hf = 2x6 measurement matrix

Vf(t1) 2-dimensional, discrete-time, zero-mean, white

Gaussian measurement noise of covariance R.

The measurement matrix, Hf, is

Hf o 000 1 (3-19)HI : 0 1 0 0 0 1 31

and the covariance matrix Rf is [9,15]:

R 0.00363 0 (2LI = 0 0.00598 (3-20

The measurement vector and measurement distribution

matrix are then used in the linear Kalman filter update

equations. It is assumed tie reader already has a knowledge

of linear Kalman filter theory, so the equations will not be

repedted here.

. Center of Mass Offset Filter

Fhe main thrust of this thesis work is to consider the

use ot additional measirements to aid in determination o
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the missile hardbody location. The purpose of the second

filter developed in this effort is to estimate the offset

distance between the filter image intensity centroid es-

timate and the missile hardbody center of mass. The deci-

sion [8' was made to orient the offset distance angularly

using the filter estimated FLIR plane image centroid velo-

city vector. This decision was based on the desire to use

any information already available to aid in determining the

missile center of mass location. The six-state filter

already provides estimates of the FLIR image velocity, and

this should be reflective of the missile hardbody velocity

vector. Figure 3.2 shows the physical representation of the

filter's estimate of the offset distance.

3.3.1 Dynamics Model. For this effort, the offset

between the filter FLIR image centroid and the missile

center of mass was represented as a bias. The decision was

made [8] to represent this offset bias using a model of an

integrator driven by white Gaussian noise (actually pseudo-

noise for filter tuning: an undriven integrator yields a

bias as an output). The single state representation of the

linear, time-invariant, stochastic differential equation is:

x I .ff, o (I) = wd 4 ,1 f (3-21)

where:

f) :state representinq ottset distance between

missile cm and FLIR image centroid
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Wcn offst) = zero mean, white Gaussian noise with

strength Q

The scalar representation of the filter propagation

Equations (3-6) and (3-7) are:

A A
Xcin offset(t ti ) = X_ /"IOff ( l ) (3-22)

PCM offset (ti-1) Pc?? off set (t I )  + Qd cm nff s.'t (3-23)

3.3.2 Measurement Model.

One of the reasons for the method in which the center of

mass offset measurement simulation was developed in Chapter

2 was to preserve linearity in the filter equations. Other

formulations (such as separately estimating the x and y

components of the bias) were considered, but involved non-

linear measurement models. The use of a single state, repre-

senting the magnitude of the bias, allowed a linear filter

formulation to be used. This allows the scalar measurement

model to be expressed as:

Zc n  offset(tl. P X(i nfl fP(tl.) + V n )ff tI(t ) (3-24)

where:

Z' ,)ff..,t(t) = the mass center ortset measurement

at time t

v ,.,fft()= discrete-time, zero mean, white Gaussian

measurement noise with variance R ,z t

3.4 Summary

[his chapter has presented nociels upon which the two

Faiman tilters used in this thesis ettort are based. I'he
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six-state filter includes models to estimate target dynamics

and atmospheric jitter. The measurement model included the

development of "pseudo-measurements", which are created by

correlating the current FLIR data frame with a template

representing the target's expected infrared intensity f .Ic-

tion shape. The second single state filter provides es-

timates of the offset of the missile hardbody center of mass

from the six-state filter estimated FLIR image centroid.

The offset was modeled as bias, the cutput of an undriven

integrator, and the white driving noise was added to allow

for filter tuning. The offset distance is oriented using

the six-state estimate of the FLIR plane FLIR image velocity

vector. The measurement model for this filter presented the

measurement as a direct representation of the offset state

plus measurement noise.
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4. Tracking Algorithm and Performance Evaluation Tools

4.1 Introduction

The purpose of this chapter is to present an overall

description of the tracking algorithm used in this thesis

effort. Modifications to the material presented in Chapter

3 to accommodate a diagonally rotated FL1R field-of-view

will be presented. The truth model and filter model para-

meters used in this work will also be detailed. Finally,

the evaluation tools for measuring filter performance will

also be shown.

4.2 Tracking Algorithm Overview

The main objective of this thesis research is to develop

an algorithm which can accurately track the center of mass

of a ballistic missile (in boost phase) using both passively

(FLIR) and actively (low power laser reflection off missile

hardbody) acquired measurements. This involves development

of two separate filters and of the simulation of the active-

ly acquired measurement.

Figure 4.1 details the overall algorithm. The raw FLIR

measurement is input into the enhanced correlator data-

processing algorithm. This algorithm is contained within

the dotted lines of Figure 3.1 in the previous chapter.

After the "pseudo-measurements" are produced, they become

linear measurements entered into the six-state linear Kalman
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filter. The filter produces estimates of the FLIR plane

FLIR image centroid position and velocity vector. These

estimates are used by the mass enter measurement algorithm

to produce a "pseudo-measurement" representing the output of

an optical sensor receiving reflected laser light from the

missile hardbody as the laser is swept up and down the

velocity vector direction from the estimated centroid loca-

tion. This output, in the form of an offset distance, is

then used by a second filter to produce an estimate of the

target center of mass position. This estimate would then be

the primary means of aiming a high energy laser at the

missile hardbody.

4.3 Field-of-View Rotation

In field-of-view rotation schemes, the FLIR sensor field

of view is rotated so that the target's filter-estimated

FLIR plane velocity vector is aligned with one of the FLIR

plane axes or with some other appropriate direction in the

FLIR plane. The ides, first investigated by Leeney [47, was

an attempt to maintain lock on highly dynamic targets that

could "jink" in either of the two FLIR plane directions.

Norton r13' extended Leeney's preliminary work by examining

the use of a rotating field-of-view in an MMAF scheme. Most

recently, Rizzo '141 investigated the performance of identi-

cal filters with different FOV rotation schemes. He com-

pared non-rotating, rotating (a ligning the principal axis of
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the field-of-view with the estimated velocity vector), and

diagonally rotating (aligning the diagonal of the field-of-

view with that estimated velocity vector) fields of view.

The filter using the diagonally rotated field-of-view

(DRFOV) had the lowest mean tracking error and standard

deviation. Based on Rizzo's [14] work, it was decided tc

use a DRFOV in conjunction with the six-state filter.

As previously mentioned in Chapter 3, the use of a

rotating field of view causes some modifications to be made

to the data processing algorithm of Figure 3.1 of the pre-

vious chapter. These modifications are shown in Figure 4.2

with the addition of the "rotate" blocks. These modifica-

tions will be described briefly here; for a complete devel-

opment see Rizzo [14].

The basis for the rotating FOV is the filter estimated

target FLIR plane velocity vector orientation. This is

given by:

AF A V
0- arctan (4-1)f- A

V
x

where ()f is shown in Figure 3.2

Note that the terms in Equation 4-1 a-e the third and

fourth states in the six-state filter defined in Equation

S3-L. I'his aliows the filter to provide the orientartion

:ontroi <irvt[}, to the FLI sensor for on-I u4:Iication.
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The negative sign in the numerator of Equation (4-i) keeps

the orientation angle positive in the counterclockwise

direction from the FLIR plane x axis when viewed from the

inertial frame origin. This also allows a direct comparison

with the truth model velocity orientation angle, facilitat-

ing the calculation of the error statistics.

To simulate the physical rotation of the FLIR sensor,

the incoming FLIR data is rotated before entering the data

processing algorithm of Figure 4.2. This is simulated by

performing a negative rotation, based on the positive orien-

tation angle, on the location and orientation of the in-

dividual Gaussian intensity functions described in Section

2.4.1. This corresponds to a positive rotation of the FOV

and aligns the FOV with the positive orientation angle.

Mathematically, this is done by first rotating the intensity

function peaks defined by Equation (2-40) using the follow-

ing rotational transformation matrix, first produced by

Norton [1j]:

p eak coso-f -sin(Df (4 -2)
A A VY'Xeak sinDI cos f peak

Note here that the primed variables are in the rotated

coordinate system. The intensity function of Equation (2-

40) (refer to Figure 2.4) then becomes:

lix' ,y' , 'pak(t ] ',' ek(t) /.

P Ax'Av' 4-3)
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.here:

Ax' = (X'x'ea," coe±(vYpea*)ik
peak ,,,)CosAEO + ( yI-yI', ,,sinSO

6y': (Y'-Y'peak)COs&O - (x'-x'peak'n

Ae = difference between the truth model velocity

orientation angle and the filter computed

A

orientation angle, i.e. AO = OT - ef

', v' rotated coordinates from the original FLIR

coordinate frame via Equation (4-2)

Once the incoming FLIR data has been rotated, the data

processing algorithm generates the template in the same

manner as was done in Figure 3.l.

Recall that the incoming data was centered in the FLIR

plane via the shifting of Equations (3-12) and (3-13).

However, these shifts were computed in the unrotated filter

coordinate system, while the current FLIR data image is in a

rotated frame. To implement the algorithm properly, the

translational shift is accomplished in the rotated frame by

the transformation:

_ 
A A

I X sh t cosEf -sinE f(4-4

Y' t A A L(44)
shLft sinOf cosef 2hlft

where xshift and Vyhift are given in Equations (3-12) and (3-13).

This transformation is accomplished by the "rotate"

bLock tollowing the tracking algorithm block. With this
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transformation, both the current image data and the template

are in the same coordinate frame.

The final modification to the algorithm occurs with the

"rotate" block after the "IFFT" block. The outputs of the

IFFT block are the linear offsets between the current image

data and the centered template. However, these offsets are

in a rotated frame, while the states in the filter are in

the original unrotated frame. To insure compatibility, the

offsets are rotated back into the original frame by the

transformation:

F AAcI cosef sinol Z14

z2 A -sine (4-5)

where the primed and unprimed coordinates are in the

unrotated and rotated coordinate systems, respectively.

4.4 Truth Model Parameters

Sinc3 the scenario used for this thesis was a continua-

tion of that used by Rizzo, the truth model parameters are

the same. The rationale for the choice of these pa:ameters

is fully detailed by Rizzo :147; it will not be repeated

here. For the nominal ballistic missile trajectory studied,

the initial conditions for the target inertial frame (see

Section 2.3.1) position and velority vectors are:

e,, 20,nO] meters

ew  -I0( ,000 meters
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ez = 2,000,000 meters

meters
v, = -2500 setondsecond

4330 meterssecond

meters
= 0 second

The maximum intensity value for each of the intensity

functions of Equation (2-40) is 20 intensity units. The RMS

value of Vik, which is the sum of spatially correlated

background noise (blk) and FLIR sensor noise (1'k) in

Equation (2-41), is one. This yields a signal-to-noise ratio

of twenty, which is typical of many tracking scenarios [18].

In his investigation of plume "pogo" effects, Rizzo

[14] desired to have the exhaust plume in the FLIR plane

contained within a 5 x 5 pixel window. This value was

chosen so that the maximum plume "pogo" oscillation would

"fit" within an 8 x 8 pixel FOV. To represent the reference

ellipsoid hotspot dispersion of Figure 2.4, the hotspot

dispersion along the e.. direction of the target frame (Equa-

tion 2-35) was chosen to be 1 pixel, and the dispersion in

the e-. direction as 1.5 pixels. The pixel proportionality

constant was initially continued from Rizzo's value of 1.5

micro-radians/pixel. Although the "pogo" phenomenon was not

considered in this research, the desire to keep the missile

hardbody center of mass and the missile plume centroid in
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the same 8 x 8 pixel FOV prompted the continued use of the

same values to describe the hotspot dispersion.

The variance and mean squared value for the atmospheric

jitter, in both x and y directions, was continued from

previous theses [13,14,18] as 0.2 pixels2 . The truth model

bending/vibration parameters are in Section 2.2.3.

4.5 Filter Parameters

For the first analysis of the problem involving use rof

actively acquired measurements, it was dpcided to concen-

trate solely on the problem of tracking, rather than acqui-

sition and tracking. Therefore, in the simulation used for

this research, the six-state filter is initialized with zero

errors in the position and velocity at time t=O. The atmo-

spheric jitter states are also initialized to zero. The

initial state covariance matrix is identical to that used by

Rizzo, for states which are common to both filters. With

this condition, the matrix becomes:

10 0 0 0 0 0

0 10 0 0 0 0

0 0 2000 0 0 0
P(t ) = (4-6)

0 0 0 2000 0 0

0 0 0 0 0.2 0

0 0 0 0 0 0.2
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For the initial conditions on the single state filter,

both the state and the covariance were set to zero. It must

be noted that using these initial values will have a signif-

icant effect on the initial transient performance of the

filter. The values for the dynamics and measurement noise

strength were the subjects of analysis in both filters, and

these will be discussed in Chapter 5.

4.6 Tracking Algorithm Statistics

The performance of the tracking algorithm is evaluated

using Monte-Carlo simulation techniques [6]. Previous

research has shown that ten Monte-Carlo runs demonstrate

sufficient convergence to the actual statistics obtained

fron an infinite number of runs [17,18]. Based on these

previous efforts, ten Monte-Carlo runs were used to analyse

tracker performance in this research.

The sample mean errors of the tracking algorithm's

estimates are calculated as [17]:

V1- A ] (4-7)

where:

Fs(ti) = sample mean error of state estimate at time f

averaged over X runs

A
sfn(tl) = state estimate at time t, during simulation ri

s 2(t1) = truth model state value at time t, during

simulation n

N = number of Monte-Carlo runs
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The sample variance of the error is given by:

US" -~ "dl [S t. - sP (t )'-) - 1 s(1d) (4-8)

These two statistics are calculated for the target x and

y positions and velocities due to dynamics, and the FLIR

image centroid x and y coordinates. The performance of the

filter in estimating the centroid location, as well as

velocity is of primary importancc in generating the mass

center offset measurement used by the single state filter.

The same error statistics are also calculated for the offset

estimate. All the error statistics are in units of pixels,

and calculated for both before and after measurement update.

For further simplification, the above statistics are

temporally averaged over the seven second simulation. These

temporal averages, when used in conjunction with the plotted

time histories of the error statistics, provide some indica-

tion of trends during the simulation.

4.7 Performance Plots

Thirteen plots are used to assess filter performance in

this study. The first ten plots are used to describe' the

performance of the six-state t , r. They are:

1. True x position rms error vs. filter-computed x position

rms error

2. True v position rms error vs. filter-computed y position

rms error
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3. Mean target position error ± one c at all time

4. Mean v target position error ± one a at all time t

5. Mean x target position error ± one c at all time t

6. Mean y target position error ± one o at all time t.

7. Mean x centroid position error ± one a at all time t.

8. Mean y centroid position error ± one a at all time U

9. Mean x centroid position error ± one a at all time ti

10. Mean y centroid position error ± one a at all time t1-

Examples of plots 1, 3, 7, 9, 11, and 13 are shown in

Figures 4.3 through 4.8. The first two plots indicate the

adequacy of the filter tuning by direct comparison of the

actual true rms error vs. the filter computed rms error.

Note that in Figure 4.3, the constant graph is the filter

computed error and the graph with the peaks and valleys

represents the actual error. The degree of overlap between

tne two graphs indicates how well the filter is tuned

against the truth model. Plots 3 through 6 indicate how the

tuning is affecting the filter's ability to estimate the

portion of the image position due strictly to target dyna-

mics. Plots 7 through 10 provide primary tracking perfor-

mance information, since the location of the image centroid

is used in the determination of the hardbody center of mass.

Plots 11-13 assess the performance of the filter which

estimates the offset distance between the FLIR image
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centroid and the missile hardbody center of mass. The error

for this filter is determined in two steps. First, the

filter eE>imated location of the center of mass is computei

using the filter estimated offset length, the estimated

velocity vector orientation angle, and the estimated image

centroid location. The error is then calculated as the

difference between the estimated center of mass and the

truth model center of mass. As previously mentioned in

Section 2.4.2, there may be sample times in the simulation

when no measurement occurs. In this case, the last filter

estimate based on a measurement update is used for error

computation until the next measurement update occurs. The

filter error plots are:

11. True offset rms error vs filter offset rms error

12. Mean offset error, t one a, at all time t,

13. Mean offset error, ± one a, at all time t,

Similar to plots 1 and 2, plot 11 indicates the adequacy of

filter tuning. Plots 11 and 12 are the primary indicators

of filter performance, indicatinq the filter's ability to

locate the missile center of mass.

4.7.1 Plot Designation Codes. The first ten plots have

four fields in the graph label. The first field, labeled

"TX, TY", indicates the correlation time constant (in

seconds) used for the velocity model in the x and y
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directions. The second field, labeled "TAF", is the timc

constant (in seconds) usea for the atmospheric jitter model,

and is equal in both x and y directions. The third field,

labeled "VD", is the variance of the discrete driving noise

for the velocity states in pixelsj/seconds , and is assumed

equal in both the x and y directions. The fourth field,

"VA", is the variance of the driving noise associated with

the atmospheric jitter, and is also assumed equ-i in both

the x and y directicns. It also has units of pixels --

/seconds'. The last field, "BND", simply indicates the

inclusion of bending states in the truth model.

For the three plots associated with the offset filter,

there are five fields in the graph label. The first, "FLT

DN", indicates the variance of r-ne filte2r discrete-time

dynamics driving noise, in pixels2 . The next field, "MN",

indicates the variance of the filter measurement noise, also

in pixels2 . The third field, " TR MN", indicates the mea-

surement noise variance _n the truth model generation of the

offset measurement used by the filter. The fourth field,

"OFF", is the true offret distance, in meters, between the

missile center of mass and the truth model image centroid.

The last field, "PC", indicates the pixel proporticnality

constant, in micro-radians/pixel. The values given to these

parameters will be discussed in Chapter 5.
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4.8 Summary

This chapter has presented the overall trackinq algo-

rithm used in this research by combining the results of

Chapters 2 ai 3. An overall view of the algorithm was

presented, along with modifications to the algorithm caused

by the inclusion of a diagonally rotated FLIR field of view.

The truth model and filter parameters used in this research

were then detailed. Finally, the statistical tools used for

the filter performance evaluation were shown.
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5. Performance Analysis

5.1 Introduction

This chapter presents the results of the evaluation of

the performance characteristics of the algorithms discussed

in Chapter 4. Section 5.2 details the observability analys-

is conducted to determine the states which were used in the

six-state filter. Section 5.3 then presents the analysis of

the tuning process for that filter. Once tuning of the six-

state filter was accomplished, a parameter study involving

the single state filter for estimating the mass-center-to-

intensity-centroid offset was undertaken. Section 5.4

presents the results of the sensitivity study, in which the

parameters of truih I odel and filter measurement noise

variance were altered. Section 5.5 shows the corresponding

robustness study results, in which the filter was not in-

formed of parameter changes in the real world. Section 5.6

and 5.7 then pr sent the results from the parameter studies

involving the truth model offset distance and pixel propor-

tionality constant.

5.2 Filter Observability Study

Rizzo [14], in his research, discovered an observa-

bility-like problem in the filter models used to describe

the "pogo" phenomenon he was investigating. He compared the

performance of an eight-state benchmark filter (modelling
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FLIR plane image position, velocity, acceleration, and

atmospheric jitter in both x and y directions) to a ten-

state filter (modelling the same eight states plus the two

"pogo" states, pogo effect position displacement and velo-

city) which also included modelling for "pogo" effects. The

performance of both filters was measured against a 14-state

truth model which also included "pogo" effects modelling

(the same 12-state model described in Section 2.2 plus the

two "pogo" states). In examining the results, he discovered

a performance anomaly, in that the eight-state filter out-

performed the ten-state filter. Since the higher order

filter had "knowledge" of the "pogo" effects in the truth

model and the lower dimensioned filter did not, this was the

opposite of the results to be expected. In investigating

this anomaly, he performed a stochastic observability test

[6] on both the eight- and ten-state filters. The velocity

and acceleration states were found to be weakly observable,

particularly the acceleration states. Rizzo [14:7-5] recom-

mended that alternate acceleration models be considered in

the future, or that the acceleration states be dropped from

the filter completely, in order to address this difficulty.

For this research, it was decided [8] to reduce the

filter order by dropping acceleration, and possibly velocity

states, from the eight-state filter. To determine the final

order of the filter, the observability was reexamined. The
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stochastic observability condition to be examined is given

by the following relationship [6:2431:

i
al : V (T(t],tt.)HT(tI) R '(t J.)H(t :S 3].t (5-1)

J~i 5-11

where the summation term in Equation (5-1) is the

stochastic observability Grammian matrix. If there exist

positive numbers a and B, and 0 < a < 3 < co, and a posi-

tive integer X such that, for all z 2 N, the above relation-

ship holds, then the system is said to be stochastically

observable. Because of numerical precision problems

involved with exponential terms within the Grammian matrix,

N = 13 and i = 14 were used in the test.

The observability Grammian matrix (diagonal terms) for

Rizzo's eight-state benchmark filter is:

3856 - - - - - -

- 2341- - - - - -

- -310- - - - -

- - 188 - - - -

. . . . 1 1 .2 - - -

.- 6.8 - -

. . . .. - 2 4 4 1 4 6 6 4 4 -

L- .- 148202729-_

The order of the states in the observability Grammian

matrix is: position (x and y), velocity (x and y), accelera-

tion (x and y), and atmospheric jitter (x and y). It is

necessary to note that the observability matrix was not a

diagonal matrix: for the purpose of clarity and emphasis,
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only the diagonal terms are shown. By observation of the

size of the diagonal terms, states with potential obser-

vability problems can be distinguished by their small mag-

nitude relative to the other diagonal entries. For determi-

nation of system model observability, the Grammian matrix

eigenvalues must be examined. The eigenvalues for the

eight-state filter are:

1673

2756

14.97

24.66

.03037

.0501

148203577

L 244148042.

Of the eight eigenvalues, the third through the sixth

are smaller by three to five magnitudes than the next

smallest eigenvalues. Here, eigenvalues three and four

correspond basically to the velocity states, and five and

six to the acceleration states. Particularly the accelera-

tion state eigenvalues, being almost zero, indicate almost

complete unobservability. This, in combination with the

relatively small diagonal values from the observability

matrix, led to the decision to delete the acceleration

states from the model. Even though the velocity states were

much less observable than either the position or atmospheric
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jittE- states, the decision was made to keep these states in

the model. The need for a filter estimate of the velocity

vector orientation angle as a means of aiming the low power

laser necessitated this decision. With the deletion of

acceleration from the eight-state model, and the remodelling

of velocity, the six-state model detailed in Chapter 3

became the basis for the filter used in this research to

estimate FLIR plane target parameters.

5.3 Filter Tuning Process

The purpose of this section is to describe the tuning

procedure and results obtained during the tuning of the six-

state filter for the benign trajectory used for this re-

search. The tuning parameters used in this study are the

variances (in both the x and y directions) of the first-

order Gauss-Markov representations of the target velocity,

and the variances (in the x and y direction) of the atmo-

spheric jitter position processes. This decision was made

after conducting an initial tuning study involving the

variances and correlation times of both the target velocity

and jitter position processes. This study revealed the

sensitivity of the filter mainly to changes in the varian-

ces. Additionally, in previous research [13,14,18], a value

of 0.707 seconds had been shown to be representative for the

atmospheric jitter correlation time constant, and the deci-

sion [8] was made to remain with this value throughout the
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tuning process. A value of 8.5 seconds was used [8] for the

correlation time constant of the velocity process, and was

also kept constant throughout the tuning process. This

value was selected based on the fact that the dynamic maneu-

vering expected from a ballistic missile in boost phase

would be somewhat less than that expected from a large

manned borhpr (with a correlation time of approximately six

seconds).

Table 5.1 lists the variation of the two tuning para-

meters, the target dynamics velocity and jitter position

variances, for the tuning process. For the first tuning

run, the dynamics variance was set at 5, and the jitter

variance was set at 0.2. The time averaged statistics are

listed in Table 5.2 and the performance plots are given in

Appendix B, Figures B.l-B.10. The plots in Figure B.1 and

B.2 indicate the filter is underestimating the error varian-

ces on target position estimates in both the x and y direc-

tions. The dynamics state errors in Figures B.2-B.6 also

indicate the need for further tuning. The centroid plots,

Figures B.7-B.10, are very important. In this research, the

need for the filter to provide an accurate estimate of the

FLIR image centroid is critical to the aiming of the low

power laser and resulting estimation of the missile center

of mass ( velocity estimation accuracy is also important, in

order to establish the estimated orientation angle of Equa-

tion (4-1) that indicates the angular orientation of the
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center of mass from the intensity centroid). Here, par-

ticularly in the plots for the centroid position error after

update (Figures B.9-B.10), there is an increasing error over

time.

Table 5.1. Tuning Run Parameters

RUN # axCyl (Pixels-)

1 5 0.2

2 50 0.2

3 200 0.2

4 800 0.8

Table 5.2. Run 1 Temporally Averaged Statistics

Error in Estimate of: Mean 1 Sigma
A

x(t z ) -1.4587 .94001

Y(tz  2.5274 1.02790

x(ti) -1.2958 .90143A
(t z.  2.2610 .98574

A

xc(ti .  -.0126 .98152

yc(ti- 1.4844 .93751
A

xc(t -.1263 .28028
A

yC (ti .5154 .19054

For the second run, the target dynamics model velocity

variance was increased to 50, while the jitter variance was

kept at 0.2. The tuning results are presented in Figures
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Table 5.3. Run 2 Temporally Averaged Statistics

Error in Estimate of: Mean 1 Sigma

X(ti )  -.56178 1.05820

W.) 75109 1.10460
A

X(t ) -.47145 .99714
A

Y( lt ) .61261 1.04780
A -

xC(t 1 ) -. 33741 1.00710
A-
y (t ) .44683 .95115
A
XC(t, ) -. 12905 .29073
A

yC(t 1 ) .11751 .18595

B.11-B.20 and Table 5.3. Although some improvement in

matching the filter-computed error variance to the actual

error variance has been made, the improvement is not sig-

nificant. A significant improvement in the target dynamics

position state error and especially in the centroid error

has been achieved, as indicated by Figures B.13-B.20. In

comparing Figures B.9 and B.10 to B.19 and B.20, note the

mean error line slope has been significant'.y reduced in the

x channel. The y channel has also improved, but not to the

same degree. This is due to the fact that the R matrix of

Equation (3-20) in the measurement model weights the y axis

FLIR plane measurements more heavily than the x axis, and

thus the filter y axis estimates respond less to changes in

the dynamics driving noise strength. The increase in the

error over time indicates that filter divergence would

eventually become large enough to cause loss of tracking.
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However, a target reacquisition algorithm [18] has been

previously developed in past work as part of the simulation.

If the errors did become large enough, the simulation uses

this algorithm in a target acquisition, rather than a target

tracking mode. This would prevent total divergence from

occurring.

Several interim runs were performed, in which the target

dynamics velocity strength was systematically increased

while keeping the jitter variance constant. A final value

of 200 was used for the target dynamics velocity variance.

The results of that run are shown in Figures B.21-B.30 and

Table 5.4. As can be seen from Figures B.21 and B.22,

changing the target dynamics velocity variance does not

significantly affect the match between the filter-computed

error variance and the actual error variance. However, the

errors in the dynamics states and particularly in the cen-

troid location have been significantly reduced. Note

Figures B.29 and B.30. The error in the x-axis centroid

location is essentially zero. The y-axis centroid error,

while not zero, is less than 0.2 pixels at the end or the

simulation.

The next step was to discontinue the tuning via the

target dynamics error variance, and to continue the tuning

using the jitter variance. When tuning via the jitter

variance, a counterproductive result was noted. As the

jitter variance was increased, the match between the filter-
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Table 5.4. Run 3 Temporally Averaged Statistics

Error in Estimate of: Mean i Sigma

AX(tl.) -.30019 1.2293

S(t ) .53239 1.1514
A -

X(tl') -.23704 1.1340

) .43096 1.0550

kc (tl -. 09359 1.0376

C (t ) .30553 .98254
A

xc(tj ) -.01949 31303

C(t.) . 12094 .18187

computed error variance and the actual error variance in-

creased, but the error in the target dynamics position and

centroid locations also increased. It was then necessary to

increase the target dynamics velocity variances in compensa-

tion. This increase in the target dynamics velocity var-

iance then resulted in an increase in the mismatch between

the filter-computed error variance and the actual error

variance. After several iterations, a final value of 800

was selected for the target dynamics velocity variance and

0.8 for the jitter variance. The final tuning run results

are shown in Table 5.5 and Figures B.31-B.40. Note that

there is a good match between filter-computed and actual

error statistics, as evidence by Figures B.31 and B.32. The

tuning to achieve accuracy in locating the centroid location

has also been preserved, as shown by the 2entroid x and y

mean errors after update in Table 5.5 and Figures B.39 and
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Table 5.5. Run 4 Temporally Averaged Statistics

Error in Estimate of: Mean I Sigma

7t~ ) -.22712 1.1871

(t ).41019 1.1526
A

X(t ) -.21384 1.0945
A
y(tI .31213 1.0663
A
xC(t ) -.15671 1 .0236

AV (ti .17855 .95695
A
x((ti ) -. 04210 .21210

(t ) .00110 .18875

B.40. Comparing the results in Table 5.5 to the prior

tuning run results, the tuning process seems to benefit the

error means more than the one sigma values. At this point

the filter was considered tuned and further tuning was

discontinued.

5.4 Mass Center Offset Filter Sensitivity Study

The main thrust of this research is to examine the

performance of a filter designed to estimate the offset

between the missile hardbody center of mass anH the filter

computed image centroid, and the effects on this performance

of variations in parameters that define the tracking scen-

ario. Before describing the results of these parameter

studies, some background material will be presented.

For this work, it was decided to continue using the same

size missile used by Rizzo -14'. The missile used in the
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simulation had a length of 40 meters and a diameter of 3

meters. As was previously mentioned, it was decided to

apprcximate the shape of the missile in the FLIR plane as a

rectangle. With the trajectory used in this work, such that

the missile is basically orthogonal to the line of sight,

the rectangle dimensions were approximately the same as the

missile dimensions.

The next item of consideration was the choice of beam-

width for the low power laser used to generate the "measur-

ement" of the distance between the image centroid and the

missile center of mass in the simulation. The desire to

choose a beamwidth realistic for the range used in the

simulation (approximately 2000 kilometers) versus the need

for simplification in the initial simulation of this problem

led to a tradeoff study. For ease of implementation of the

software simulating the reflection of the laser, it was

decided to use a beamwidth less than or equal to the missile

diameter. To allow beamwidths wider than the missile dia-

meter would have caused a large increase in the amount of

software necessary for the beam simulation. It was also

desired to have as large a number of simulated reflections

during the simulation as possible. This is a function of

the accuracy of estimating the image intensity centroid and

target velocity (to establish Li line along :hich to sweep

the laser), the true offset between the intensity centroil

and missile center of mass, and the laser beamwidth. A
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study was then conducted to examine these tradeoffs. Al-

though the details of this study will not be presented, a

value of 2.75 meters was finally selected as the beamwidth

value at the target location to be used in the study.

The sensitivity study examined the effect of simulta-

neously changing both filter-assumed measurement noise

variance and the truth model measurement noise variance.

The variance of the filter discrete-time noise was set at

four meters2 [8] for the entire study. With no prior

knowledge of the physical parameters associated with the

"real world" offset, a value equal to ten percent of the

missile length was used. Three measurement error levels

were examined, representing high, medium, and low levels of

accuracy. The measurement error standard deviation levels

studied were 0.2, 2, and 20 meters. For this study, two

meters is considered the nominal error [8]. The results of

the study arL presented in Table 5.6 and Figures C.1-C.9.

As was previously mentioned in Chapter 4, the error reported

in both the time averaged statistics and the performance

plots is the error between the truth model center of mass

location and the estimated center of mass location which was

determined using the filter-estimated offset distance, the

estimated velocity vector orientation angle, and the es-

timated image intensity centroid location. In Table 5.6, the

measurement error levels are in meters and the statistics

are in pixels.

106



Table 5.6 Sensitivity Study Time Averaged Statistics

Measurement Noise Center of Mass Mean 1 Sigma
Standard Deviation Error Statistic

A
0.2 Xci n error(ti ) .68248 .20311

A
xci error(t . ) .09571 .18694
A

2.0 Xcm error(t. ) .74503 .22147
A
xcm error(t 1 .10714 .14196
A

20 Xcm error(lt ) 1.2707 .39839
A
Xcn error(t ) .19072 .14516

In examining the statistics for the first two measure-

ment precision levels, as well as Figures C.2, C.3, C.5, and

C.6, several observations can be made. First, the mean

error (particularly after update) changes only approximately

ten percent for an order of magnitude change in the measure-

ment precision level. Observing Figures C.2 and C.4, it is

apparent that with increasing measurement noise strength,

the filter takes longer to learn the underlying dynamics and

reach the steady state mean error level, as would be ex-

pected. The third measurement precision level had much

poorer statistics. In this case, the filter is still learn-

ing the underlying dynamics and never does reach the steady

state mean error during the simulation time interval. This

is well illustrated by Figure C.8. Also note that there is

little difference in the standard deviations between the two

and twenty meter measurement precision levels. This indi-

cates that increasing the value of measurement noise var-
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iance predominantly affects the amount of time the filter

needs to estimate the offset, and not the accuracy of that

estimate. Also note the effect of using an initial filter

covariance of zero, especially in the case of the 20 meter

measurement precision level.

5.5 Mass Center Offset Filter Robustness Study

In a robustness study, the truth model is given para-

meters different irom those in the filter, and the perfor-

mance of the filter analyzed. This analysis indicates the

degree of filter robustness when the parameters assumed by

the filter models differ from the "real" world as represen-

ted by the truth model. In this robustness study, the

measurement error level was also the parameter varied.

Filters with the three measurement error levels ( measure-

ment noise standard deviations of 0.2, 2, and 20 meters)

were studied. In each case of filter-assumed measurement

precision, the two remaining error levels were consecutively

used in the truth model, and the performance of the filter

analyzed. As in the sensitivity analysis, the variance of

the filter driving noise was held constant at four meters-

for all cases considered in the robustness study. The

results are presented in Table 5.7 and Figures D.l-D.18.

The parameter values and statistics from the sensitivity

study are included as a reference. The units for Table 5.7

are the same as Table 5.6.

108



Table 5.7 Robustness Study Time Averaged Statistics

Measurement Noise Mass Center
Standard Deviation Error
Filter Truth Model Statistic Mean 1 Sigma

A
0.2 0.2 Xc n error(tt) .68248 .20311

A
Xc error(1j ) .09571 .18694
A

0.2 2.0 Xcn error (1 ) .67927 .20276

AXcm error(tj1) .09551 .19553A

0.2 20 Xcm error(t ) .78159 .44836
A
Xcm error(tz ) .10935 .25052
A

2.0 0.2 Xcm error(ti ) .74923 .22217
AXcm error(tt) .10745 .14231
A

2.0 2.0 Xc n error(ti ) .74503 .22147
A
Xcm error(tj ) .10714 .14196

2.0 20 Xcm error(tz ) .72303 .26899
AXcm error(tj ) .10539 .22603
A

20 0.2 Xcm error(tt ) 1.21810 .40208
AXcm error(tji) .19252 .14554
A

20 2.0 Xcm errort ) 1.28010 .40172
A
Xm error(ti) .19235 .14487
A

20 20 Xci n error(t ) 1.27070 .39839
A
Xcm error(t ) .19072 .14516

For the first case, the trend is for decreasing

performance with increasing valuts of measurement noise

variance in the truth model. This is to be expected since

the mismatch between filter and truth model increases with

increasing measurement noise variance. However, the in-

creases in the mean error are only 13 percent for an order

of magnitude increase in the truth model noise standard

deviation. This is due to the fact that the filter weights
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the measurements so heavily that, even with the increased

uncertainty in the truth model measurements, the filter is

quickly able to learn the value of the offset. Note also in

Figures D.5 and D.6 the significant reduction in the stan-

dard deviation after update for the case where 20 meters was

used in the truth model.

The second case is interesting because it shows the

effect of having both larger and smaller measurement noise

variances in the truth model as compared to the filter.

Here, the mean errors (both before and after update) are

smaller when the truth model measurement error level exceeds

the filter measurement noise variance, but with higher error

standard deviations. This can be seen in both in Table 5.7

and Figures D.8, D.9, D.11, and D.12.

The third case considers the performance of a filter

which has low confidence in the measurements it receives.

Note that the long transient for the case of the filter with

the 20 meter error standard deviation shows clearly the

deleterious impact of using zero as the initial value for

the covariance. Here the mean error is approximately twice

that in case one and two. Particularly note Figures D.14,

D.15, D.17, and D.18. Again, similar to the third case

considered in the sensitivity study, the filter is still

learning the value of the offset state, and does not reach

the steady-state value during the simulation. However, the

standard deviations in the two variations considered here
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are very close to the first part of case two. This situa-

tion is similar in that the filter-assumed measurement noise

variance was greater than that in the truth model.

5.6 Pixel Constant Study

The next parameter to be investigated is the pixel

proportionality constant. The main purpose of this study is

to determine the FLIR sensor element resolution necessary

for implementation of a tracking scheme involving active

illumination of the target. In this study, the variance of

the filter discrete-time noise was continued at a value of

four meters2. Four meters2 (corresponding to the nominal

error standard deviation of two meters) was used as the

measurement noise variance in the mass center offset filter.

The same value was also used for the measurement noise

variance in the truth model. The performance of the offset

filter was examined as the value of the pixel proportion-

ality constant was varied between 7.5, 15, and 30 micro-

radians/pixel. The variation involving the 15 micro-radian-

/pixel value has already been presented in the sensitivity

study, but is repeated here to aid in the comparisons. The

results are presented in Table 5.8 (in units of pixels) and

Figures E.I-E.9.

To compare the results in terms of constant pixel size,

the statistics in Table 5.8 for the 7.5 micro-radian/pixel

case were determined by multiplying the mean and standard

deviation from that analysis by two. In a similar manner,
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Table 5.8 Pixel Constant Study Time Averaged Statistics

Pixel Constant CM Error Statistic Mean 1 Sigma

A7.5 Xcin error(ti ) 2.57560 1.27740
A
Xc error(ti ) 1.14648 .34514A

15 Xcm error(ti ) .74503 .22147
A

Ac error(ti ) .10714 .14196
30 Xcm error(ti ) .39447 .24665

A
Xcm error(ti ) .01208 .03493

the statistics in Table 5.8 for the 30 micro-radian/pixel

case were computed by dividing the mean and standard devia-

tion from that analysis by two. After converting to a

constant pixel size (30 meters by 30 meters, for the nominal

15 micro-radian/pixel case at a target range of 2000 kilo-

meters), several observations can be made. First, in ob-

serving Table 5.8, the mean center of mass position error

decreased with increasing pixel size, both before and after

update. The same trend was true for the standard devia-

tions, except in comparing the 15 and 30 micro-radian/pixel

preupdate standard deviations. These results seem to be

contrary to the expectation of increasing filter performance

with increasing sensor resolution (i.e, a smaller pixel

constant). However, a different trend is apparent in Fi-

gures E.l-E9. Plots E.1 through E.6 appear to echo the

trend seen in Table 5.8 when pixel scale factors are con-

sidered. Figures E.7-E.9 indicate a much different trend.

112



Here the actual error is increasing with time as shown in

Figure E.7. Figure E.8 echoes this, as the standard devia-

tion about the mean offset value is also increasing with

time. The peaks and gaps in Figure E.9 (caused by the fact

that the filter may go for extended periods without receiv-

ing a measurement update) would seem to indicate that, at

this level of resolution, the ability of the six-state

filter to provide information about the location of the

image centroid and tne target velocity orientation angle is

seriously degraded. With this degradation, the number of

times a reflection occurs (a 10 Monte-Carlo run average of

8.6 reflections for a seven second simulation, with 210

reflections possible) is reduced, and the offset filter

performance suffers accordingly.

5.7 Offset Distance Study

The final study conducted examined the mass center

offset filter performance as a function of the actual offset

distance between the missile center of mass and image center

of intensity. The expectation was that, as offset distance

was increased, the performance of the filter est4mating the

offset distance would suffer. This is due to the fact that

the error in the six-state filter estimate of the velocity

orientation angle used to aim the laser increases linearly

with offset distance. As the error increases, there are

fewer reflections which can be used to update the filter.
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The filter and truth model noise parameters are

identical to those in the pixel constant study. The nominal

value of the pixel constant, 15 micro-radians/pixel, was

also used in the study. The two offset distances considered

were 86 and 172 meters. These were selected as multiples of

the nominal 43 meter value used for all the other analyses,

and because these values would allow both the missile and

the FLIR image to be contained in an 8 x 8 pixel field of

view.

The time averaged statistics are presented in Table 5.9

and the performance plots in Figures F.l-F.6. In Table 5.9,

the offset distance is in meters and the statistics are in

pixels. Although not part of this study, the statistics for

the nominal 43 meter value are included in Table 5.9 for

reference.

The statistics in Table 5.9 confirm the expectation of

decreasing filter performance with increasing offset

distance. Both the offset mean and standard deviation

increase with increasing offset distance. The performance

plots also confirm this idea. In comparing Figures F.l-F.3

to F.4-F.6, note that the filter using the 172 meter offset

is taking much longer to reach steady state performance.

This is due to the fact that there are fewer measurements (a

ten Monte-Carlo run average of 23 reflections per 7 second

simulation for the 172 meter offset against an average of

28.9 for the 86 meter offset case and 32.6 for the 43 meter
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Table 5.9 Offset Distance Study Time Averaged Statistics

Offset Distance Error Statistic Mean I Sigma

A43 Xcm error(ti. ) .75403 .22147
A
Xcm error(t( ) .10714 .14196
A

86 Xcm error(t ) .98793 .24490
A
Xcm error(ti ) .11227 .22204
A172 1kc m error(ti ) 1.61800 .66766
AI

Xcm error(t j) .12636 .29407

offset case) for the filter to learn the state. In examin-

ing Figures F.4 and F.5, note the large change in the fil-

ter's performance at approximately three seconds. To deter-

mine the reason for this, the times at which measurements

occurred were examined for all ten Monte-Carlo runs. For

two of those runs, only one measurement was received by the

filter in the first three seconds. Additionally, for sev-

eral of the runs, a very small percentage of the total

number of measurements in the simulation occurred before

three seconds. With only 10 runs, these anomalies have a

significant impact on the statistics plotted.

5.8 Summary

This chapter presented the results of this thesis

research. The observability analyses and filter tuning

process used to develop the six-state FLIR data filter were

presented first. Then, using this filter's outputs as the

means to produce "measurements" of the low-power laser
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returns from the missile hardbody, the studies involving the

mass center offset filter were then described. These stud-

ies i.r'ided a ens vit"y and robustness Anal-, is of the

filter itself, and studies involving variations of the pixel

constant and truth model offset distance.
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6. Conclusions and Recommendations

6.1 Introduction

This chapter summarizes the conclusions reached in this

thesis and recommends topics for further study. Section 6.2

draws conclusions based on the analyses of Chapter 5.

Section 6.3 continues with suggestions for continued

research in the area of FLIR tracking of ballistic missiles

aided by active low power laser illumination.

6.2 Conclusions

Various conclusions have been made in Chapter 5. These

conclusions will now be brought together and presented.

6.2.1 Six-State Filter Tuning. Tuning the filter via

the target state dynamics driving noise and the atmospheric

jitter driving noise proved adequate. The final tuning

yielded a filter that could accurately identify the location

of the FLIR image centroid. However, the development of the

simulation of the laser reflection measurement required an

accurate estimate of both the image centroid location and

the velocity vector. In estimating velocity, the filter's

performance was less than adequate. The initial goal [81

was to be able to aim the laser accurately enough to receive

a reflection measurement better than 35 percent of the

simulation time. The percentage of measurements actually
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received was on the order of 15 percent, much less than

anticipated. Comparison of the truth model image centroid

and velocity orientation angle to the filter estimates of

these parameters showed the errors in the filter-estimated

velocity orientation angle to be the reason for the low

percentage of reflections received. This problem will be

discussed further in Section 6.3.

6.2.2 Offset Filter Sensitivity Study. This study

examined the effects of different sensor measurement noise

levels on filter performance. The analysis indicated that

the steady-state mean error in the offset length is insensi-

tive to measurement noise variance. The standard deviations

reported were also relatively independent of measurement

noise variance. The measurement noise variance does strong-

ly affect the amount of time the filter takes to reach the

steady-state error level. The conclusion from this is that

sensor accuracy may be a secondary consideration in system

design trade-off studies, for the models used here.

6.2.3 Offset Filter Robustness Study. In a robustness

study, the primary area of concern is the filter's perfor-

mance when the "real world", as represented by the truth

model, is different from the filter's internal world modcl.

The parameter used in this study was the measurement noise

variance. Three filters, with high, medium, and low assumed

measurement noise variances were studied. In each case, the
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filter's performance was analyzed when the truth model -,;as

given a measurement noise level different from that in the

filter. The results indicated that the filter's perrormance

was fairly robust to changes in this truth model parameter.

These results lead to the conclusion that single filter

performance is adequate and a multiple model adaptive filter

algorithm or other form of filter that adapts to this para-

meter is not necessary.

6.2.4 Pixel Proportionality Constant Study. The re-

sults of this study are not conclusive. The general expec-

tation for FLIR tracking systems is that increased sensor

resolution should lead to increased tracking accuracy.

However, the results did not support this in all respects.

The intermediate sensor resolution gave the best filter

performance. No immediate explanation was found for this

result. Since the six-state filter was tuned using this

value, it is unknown whether or not this introduced a bias

in the results. No conclusions were reached; this topic

wili be will addressed further in Section 6.3.

6.2.5 Offset Distance Study. The final study in this

research examined the effect of increasing the offset dis-

tance between missile hardbody and infrared intensity cen-

troid. The offset distances studied were selected to allow

both the FLIR intensity image and the reflections trom the

missile hardbody to occur within an 8 x 8 pixel field or
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view. The results support the conclusion that, as offset

distance increases, filter performance decreases; the amount

of degradation was quantified.

6.3 Recommendations

The recommendations made here are to suggest possible

lines of research to clarify problems uncovered in this

research or to expand preliminary investigations started in

this work.

6.3.1 Six-State Filter Modeling and Tuning. Based on

Rizzo's recommendations [14], a reduced order six-state

filter was finally implemented by removing acceleration

states frcm the filter design model. However, Rizzo also

recommended remodeling the acceleration states using a

constant turn rate instead of a first-order Gauss-Markov

model. This suggestion was not implemented in this re-

search. Remodeling the acceleration states, retuning the

filter, and then doing an observability analysis, represents

an alternative approach to addressing the observability pro-

blem. This approach might also yield a filter which better

estimates the velocity orientation angle. It cannot be

emphasized enough that accurate velocity vector estimation

is crucial to the viability of the algorithm in it's present

form.

The second recommendation is to retune the six-state

filter to yield better velocity estimates. The tuning
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accomplished in this research paid close attention only to

the filter's performance with regard to estimating the FLIR

intensity image centroid location. The filter should be

retuned for both accurate centroid position and velocity

vector estimates. For active illumination of the target to

be a viable concept, both the image centroid and the

velocity vector must be accurately estimated.

Direct examination of jitter position plots would also

benefit the tuning process. In this effort, the jitter

position state tuning response could only be examined in-

directly by looking at the image centroid plots. By direct-

ly examining plots of both dynamics and jitter position

states, a clearer understanding of the effect on filter

tuning of changing parameters in these two processes could

be achieved.

6.3.2 Illumination Modeling Improvement. For this

thesis research, a simple geometrical approach was used to

model the laser illumination of the target. Many effects

were neglected. For future work, a more accurate model is

needed. This model should include more accurate

representation of the missile's three-dimensional shape.

The simulation of the laser reflection itself should include

missile shape effects (laser reflecting off cylindrical

object rather than flat surface), and the effects of atmo-

spheric distortion in the reflected laser light. Also, the

dynamics of sweeping the laser up and down the estimated
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velocity vector direction from the intensity centroid should

be incorporated. Alternate search patterns, in which the

laser is swept both along and perpendicular to the estimated

velocity vector in a sinusoidal pattern, should be crn-

sidered. This would increase the probability of reflection

by increasing the search area, as well as reducing the

dependence of the algorithm on an accurate velocity vector

estimate. The increased accuracy of illumination modeling

will significantly enhance the credibility of the simulation

and conclusions drawn from it.

6.3.3 Different Initial Filter Parameters. With no

previous knowledge of the initial errors involved with

pointing a laser at a missile, the initial value for the

offset filter mean and covariance were set to zero. As was

evident in the sensitivity and robustness studies, this had

a significant effect on filter performance. Based on the

steady state filter errors found in this research, it is

recommended that the analyses be performed again using an

initial mean of 0.1 pixels and covariance of .05 pixels: to

confirm the results found here.

6.3.4 Pixel Proportionality Constant Filter Tuning.

The results of the pixel constant study were inconclusive.

To resolve the issue of sensor resolution, the six-state

filter should be separately tuned using the two pixel con-

stants studied in Section 5.6. After tuning, comparison of
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the performance of the three filters should help resolve

this issue.

6.3.5 Mass Center Error Resolution. The error between

the filter estimated center of mass and the truth model

center of mass used in the analysis was calculated as the

scalar length between two coplanar points. To aid in future

work, this error should be resolved into a component along

the estimated velocity vector, and a component perpendicular

to the velocity vector. By doing this, it should be pos-

sible to determine the contribution of the offset distance

estimate (along velocity vector component) and the estimated

velocity vector orientation angle (perpendicular to velocity

vector component) to the total error.
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Appendix A. Mass Center Measurement Simulation

As presented in Section 2.4.2, the mass center measure-

ment simulation is developed in terms of plane geometry.

The projection of the missile hardbody shape onto the two-

dimensional FLIR plane is represented by a rectangle. To

simulate the reflection of the laser, and the mass center

measurement derived from that reflection, the path the laser

takes as it is dithered along the velocity vector had to be

simulated. It was decided to represent the laser's path as

a rectangle in the FLIR plane also. The width of the rec-

tangle was chosen to approximate the laser beamwidth at the

target. For this study, a beamwidth of 2.75 meters was

used. The length of the rectangle was determined using

three times the truth model offset distance between the

missile center of mass and the FLIR image centroid. This

was done to insure that the rectangle was long enough for

intersection with the rectangle representing the missile to

occur.

The rectangle representing the laser path is located on

the FLIR plane using the filter estimated image centroid

location and velocity vector orientation. This is shown in

Figure A.1. One end of the rectangle is located coincident

with the image centroid location. The coordinates of the

opposite end of the laser path rectangle are located using
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the filter estimated velocity vector orientation angle. The

calculations for the endpoint are as follows:

x-endpoint Xcentroid + length cos ef (A-l)

Yendpoint = Ycentroid - length sin Of (A-2)

where:

Xendpoint' Yendpoint = the FLIR plane coordinates of the

rectangle endpoints

Xcentroid, Ycentroid = the FLIR plane image centroid

coordinates

length = desired rectangle length, in pixels

Of = filter estimated velocity vector

orientation angle

Once the endpoints have been determined, the coordinates of

the corners of the rectangle are determined by offsetting

half the beamwidth distance from the endpoints along a line

perpendicular to the velocity vector.

The simulation of the laser reflection and the correspo-

nding center of mass measurement is done in several steps.

First, the laser beam striking the missile and reflecting is

simulated by determining the area of intersection between

the missile rectangle and the rectangle representing the

laser beam path, as shown in Figure A.2. This area of

intersection is determined using plane geometry. Figure A.3
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shows an expanded view of the area of intersection. Note

that, for this example, two of the corners of the perimeter

of the intersection area are determined by the intersections

of line segments representing the outline of the missile and

laser path rectangle. The determination of the intersection

coordinates is a matter of plane geometry. For example, the

determination of the x and y coordinates of point 1 is made

as follows:

The slope of the line segment between (x.,y,) and poinL two

is m,, where m, = tan G.; the equation of this line is

y = M, (X-X) + y. (A-3)

Likewise, the slope of the line segment between (x ,y_) and

point three is m2, where m- and the equation of
tanet

this line is

y = m2(x-x ) + y (A-4)

Setting Equation (A-3) equal to Equation (A-4) and solving

for x yields:

M x. - Mix + y -

Xi=. "- (A-5)

Solving Equation (A-5) and substituting this value into

either Equation (A-3) or (A-4) yields the coordinates of

point one in Figure A.3. The coordinates for point two, or

for any other intersection point, are determined in a simi-

lar manner. One area of concern is that Equations (A-3)-(A-

5) involve the equations of lines, not line segments.
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Therefore, in the simulation, the software checks the value

of the x intercept point to determine if it is between the x

coordinate of point three and x,. If this condition is

true, then the line segments do intersect, some portion of

the laser beam rectangle falls on the missile rectangle, and

reflection occurs. If this condition is not met, then the

intersection point occurs beyond the line segment endpoints.

In this case, no portion of the laser rectangle and the

missile rectangle are in common. This constitutes a "miss",

and no reflection occurs.

Assuming reflection has occurred, the next step is to

determine the center of mass. Since the entire purpose of

using low power laser reflections is to obtain information

about the center of mass of the missile, the center of the

intersection area is equated to the "measured" center of

mass. For the example of Figure A.3, the area defined by

points one, two, and three is triangular. Approximating the

center of this area is basically approximating the center of

a triangle. The center of a triangle would normally be

determined by the intersection of three lines, each line

running from a corner to the opposite side, and that line

bisecting the angle at that corner. This intersection is

approximated by first taking a point one third the distance

from point one to two along that line segment. At that

point, a perpendicular line segment is run to the line

segment between points two and three. The center is
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approximated by a point halfway along the perpendicular line

segment. The distance between this center point and the

FLIR image centroid of Figure A.1 becomes the offset length

measurement of Equation (2-44). If the area of intersection

is rectangular or trapezoidal, then the calculations for the

center of the are made accordingly.
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Appendix B. Plots for Six-State Filter Tuning

Discussion in Section 5.3

Run #1 Figures B.1-B.10

Run #2 Figures B.1l-B.20

Run #3 Figures B.21-B.30

Run #4 Figures B.31-B.40
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Figure B.4 Tuning Run #1 Y-Minus Position Error
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Figure B.5 Tuning Run #1 X-Plus Position Error
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Figure B.6 Tuning Run #1 Y-Plus Position Error
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Figure B.7 Tuning Run #1 X-Minus Centroid Position Error

138



z

r >

Figure B.8 Tuning Run #1 Y-Minus Centroid Position Error
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Figure B.9 Tuning Run #1 X-Plus Centroid Position Error
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Figure B.IO Tuning Run #I Y-Plus Centroid Position Error
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Figure B.11 Tuning Run #2 X-Channel Filter Vs Actual Error
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Figure B.12 Tuning Run #2 Y-Channel Filter Vs Actual Error
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Figure B.13 Tuning Run 42 X-Minus Position Error

144



:2 :

Fiaure B.14 Tuninq Run #2 7-Minus Position Err-or

145



Figure B.15 Tuning Run 42X-Plus Position Error
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Ficqure B.16 Tuning Run x12 7-Plus Position Error
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Figure B.19 Tuning Run ;2 X-Plus Centroid Position Error

I 5 0



<

22

Figure B.20 Tuning Run #2 Y-Plus Centroid Position Error
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Figure B.22 Tuning Run #3 Y-Channel Filter Vs Actual Error
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Figure B.23 Tuning Run ;3 X-Hinus Position Error
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Figjure B.24 Tuning Run #3Y-lMinus Position Error
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Figure B.25 Tuning Run #3 X-Plus Position Error
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Figure B.26 Tuning Run #3 Y-Plus Position Error
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Figure B. 27 Tuning Run 43 X-l4inus Centroid Position Error
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Figure B.29 Tuning Run 3 N-Pius Centroid Position Error
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Figure B,30 Tuning Run 3 Y-Flus Centroid Position Error
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Figure B.40 Tuning Run ;4 Y-Plus Centroio Position Error
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Appendix C. Plots for Sensitivity Study

Discussion in Section 5.4

Error Level .2 meters Figures C.l-C.3

Error Level 2 meters Figures C.4-C.6

Error Level 20 meters Figures C.7-C.9
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Figure C.1 .2Meter Error offrset Filter Vk5 Actual Error
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Figure C.4 2 Meter Error Offset Filter Vs Actual Error
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Figure C.5 2 Meter Error Offset-Minus Error
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Figure C.6 2 Meter Error Offsct-Plus Error
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Figure C.7 20 Meter Error Offset Filter Vs Actual Error
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Figure C.8 20 Meter Error Offset-Minus Error
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Appendix D. Plots tor Robustness Study

Discussion in Section 5.5

Filter Error .2 meters, Truth Model Error 2 meters

Figures D.I-D.3

Filter Error .2 meters, Truth Model Error 20 neters

Figures D.4-D.6

Eiiter Error 2 meters, Truth Model Error .2 meters

Figures D.7-D.9

Filter Error 2 meters, Truth Model Error 20 meters

Figures D.10-D.12

Filter Error 20 meters, Truth Model Error .2 meters

Figures D.13-D.15

Filter Error 20 meters, Truth Model Error 2 meters

Figures D.16-D.18
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Figure D.l Offset Filter Vs Actual Error
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Figure D.2 Offset Minus Error
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Figure D.3 Offset Plus Error
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Figure D.5 Offset M~inus Erro-
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Figure ID.. Offset Plus Error
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Figure D.7 Offset Filter Vs Actual Error
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Figure D.8 Offset Minus Error
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Figure D.9 Offset Plus Error
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Figure D.11 Offset Minus Error
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Figure D.14 Offset Minus Error

196



Figure D.15 Offset Plus Error
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Figure D.16 Offset Filter Vs Actual Error
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Figure D.17 Offset Minus Error
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Appendix E. Plots for Pixel Constant Study

Discussion in Section 5.6

Pixel Constant (Micrc-radians/Pixel)

7.5 Figures E.I-E.3

15 Figures E.4-E.6

30 Figures E.7-E.9
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Figure E.1 PC 7 Offset Filter N;Actual Error
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Figure E." PC 7.5 Offset Plus Error
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Figure E.5 PC 15 Offset Minus Error
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Figure E.0 PC 30 Offset Minus Error
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Figure E.9 PC 30 Offset Plus Error
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Appendix F. Plots for Offset Distance Study

Discussion in Section 5.7

Offset Distance (Meters)

86 Figures F.I-F.3

172 Figures F.4-F.6
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Figure F.1 Offset 86m Offset Filter Vs Actual Error
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Figure F.2 Offset 86m Offset Minus Error
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Figure F.3 Offset 36m Offset Plus Error

214



2:!

i I I I i

Figure F.4 Offset 17'2m Offset Filter Vs Actual Error
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Figure F.6 Offset 172m Offset Plus Error
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The purpose of this line of research has been to develop
an algorithm to track airborne targets using forward looking
infrared (FLIR) measurements, as a means of aiming a high
energy laser.

Past research has concentrated on the use of passively
acquired measurements, i.e. measurements of the target's
thermal intensity functions (hotspots) from an array of
infrared detector elements. This research deviated from this
by considering active illumination of the target by a low
power laser. The measurement of the reflected laser light
would then give information about the hardbody location, and
presumably an aiming point for the high power laser.

Specifically, this thesis investigated a ballistic missile
in boost phase of flight. Measurements of the missile exhaust
plume thermal intensity from an array of infrared detector
elements were used by an enhanced correlator/linear Kalman
filter to produce estimates of the FLIR image centroid
location and velocity. These estimates were then used to
simulate the aiming of a low power laser at the missile. The
"pseudo-measurement" output of an optical sensor receiving the
reflections from the missile hardbody was then used by a
second Kalman filter to estimate the location of the missile.

This thesis effort involved sensitivity and robustness
studies of the measurement noise variance in the filter which
estimates the missile location. These studies indicated the
filter's relative insensitivity to changes in the measurement
noise variance; this parameter only affected the transient
time for the filter to reach the steady state value of the
missile location. Other parameter studies involved variation
of offset distance between missile and exhaust plume, and
variation of infrared sensor resolution. The first study
indicated decreased filter performance in locating the missile
with increased offset distance. The results from the second
study were inconclusive and require further work.


